List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3854762/publications.pdf

Version: 2024-02-01

	31976	60623
9,122	53	81
citations	h-index	g-index
212	212	7405
212	212	7495
docs citations	times ranked	citing authors
	citations 212	9,122 53 citations h-index 212 212

#	Article	IF	CITATIONS
1	Supercritical water oxidation: A technical review. AICHE Journal, 2006, 52, 3933-3951.	3.6	349
2	Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. Journal of Supercritical Fluids, 2009, 47, 546-555.	3.2	333
3	Micronization processes with supercritical fluids: Fundamentals and mechanisms. Advanced Drug Delivery Reviews, 2008, 60, 339-350.	13.7	264
4	Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A: Applied Science and Manufacturing, 2008, 39, 454-461.	7.6	247
5	Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. Journal of Supercritical Fluids, 2008, 46, 83-92.	3.2	214
6	Assisted extraction of rosemary antioxidants with green solvents. Journal of Food Engineering, 2012, 109, 98-103.	5.2	201
7	New trends for design towards sustainability in chemical engineering: Green engineering. Chemical Engineering Journal, 2007, 133, 7-30.	12.7	176
8	Understanding biomass fractionation in subcritical & supercritical water. Journal of Supercritical Fluids, 2018, 133, 550-565.	3.2	174
9	Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 2004, 32, 203-219.	3.2	133
10	Supercritical anti solvent precipitation of lycopene. Journal of Supercritical Fluids, 2006, 36, 225-235.	3.2	120
11	Supercritical water oxidation process under energetically self-sufficient operation. Journal of Supercritical Fluids, 2002, 24, 37-46.	3.2	109
12	Formulation of lavandin essential oil with biopolymers by PGSS for application as biocide in ecological agriculture. Journal of Supercritical Fluids, 2010, 54, 369-377.	3.2	103
13	Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. Journal of Food Engineering, 2012, 109, 9-15.	5.2	103
14	Carotenoid processing with supercritical fluids. Journal of Food Engineering, 2009, 93, 255-265.	5.2	101
15	Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process. Journal of Supercritical Fluids, 2007, 41, 138-147.	3.2	99
16	Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol–water mixtures. Green Chemistry, 2005, 7, 380.	9.0	98
17	Formulation of Î ² -carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocolloids, 2012, 26, 17-27.	10.7	95
18	Kinetic analysis of cellulose depolymerization reactions in near critical water. Journal of Supercritical Fluids, 2013, 75, 48-57.	3.2	91

#	Article	IF	CITATIONS
19	Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Industrial Crops and Products, 2015, 74, 83-94.	5.2	89
20	Crystallization of β-carotene by a GAS process in batch Effect of operating conditions. Journal of Supercritical Fluids, 2002, 22, 237-245.	3.2	84
21	Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1594-1602.	3.6	84
22	Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1121-1128.	3.6	83
23	Acid and Alkali Catalyzed Hydrothermal Liquefaction of Dairy Manure Digestate and Food Waste. ACS Sustainable Chemistry and Engineering, 2018, 6, 2724-2732.	6.7	82
24	Supercritical fluid extraction of sunflower seed oil with CO2 -ethanol mixtures. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1573-1578.	1.9	81
25	Supercritical Water Oxidation in a Pilot Plant of Nitrogenous Compounds:  2-Propanol Mixtures in the Temperature Range 500â^'750 °C. Industrial & Engineering Chemistry Research, 2000, 39, 3707-3716.	3.7	80
26	Mathematical model of supercritical extraction applied to oil seed extraction by CO2+saturated alcohol — I. Desorption model. Journal of Supercritical Fluids, 2001, 20, 229-243.	3.2	77
27	A process for generating power from the oxidation of coal in supercritical water. Fuel, 2004, 83, 195-204.	6.4	76
28	The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresource Technology, 2011, 102, 10849-10854.	9.6	76
29	High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors. Bioresource Technology, 2013, 135, 697-703.	9.6	74
30	Thermal degradation of grape marc polyphenols. Food Chemistry, 2014, 159, 361-366.	8.2	74
31	Governing Chemistry of Cellulose Hydrolysis in Supercritical Water. ChemSusChem, 2015, 8, 1026-1033.	6.8	72
32	Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chemistry, 2015, 17, 610-618.	9.0	72
33	Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. Journal of Supercritical Fluids, 2011, 58, 313-319.	3.2	71
34	Supercritical antisolvent precipitation from an emulsion: β-Carotene nanoparticle formation. Journal of Supercritical Fluids, 2009, 51, 238-247.	3.2	69
35	Analysis of the scale up of a transpiring wall reactor with a hydrothermal flame as a heat source for the supercritical water oxidation. Journal of Supercritical Fluids, 2011, 56, 21-32.	3.2	68
36	Characterization of rosemary essential oil for biodegradable emulsions. Industrial Crops and Products, 2012, 37, 137-140.	5.2	67

#	Article	IF	CITATIONS
37	Green tea encapsulation by means of high pressure antisolvent coprecipitation. Journal of Supercritical Fluids, 2011, 56, 304-311.	3.2	65
38	Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Industrial Crops and Products, 2013, 42, 243-250.	5.2	65
39	Supercritical water oxidation with hydrothermal flame as internal heat source: Efficient and clean energy production from waste. Journal of Supercritical Fluids, 2015, 96, 103-113.	3.2	65
40	Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees. Food Chemistry, 2019, 272, 258-266.	8.2	65
41	Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. Journal of Hazardous Materials, 2006, 137, 965-971.	12.4	64
42	Valorization of solid wastes from essential oil industry. Journal of Food Engineering, 2011, 104, 196-201.	5.2	64
43	Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors. Water Research, 2011, 45, 2485-2495.	11.3	63
44	Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: Effect of operational conditions on encapsulation efficiency. Journal of Supercritical Fluids, 2012, 66, 342-349.	3.2	63
45	Pressure and temperature effect on cellulose hydrolysis in pressurized water. Chemical Engineering Journal, 2015, 276, 145-154.	12.7	61
46	Effect of the Transpiring Wall on the Behavior of a Supercritical Water Oxidation Reactor:Â Modeling and Experimental Results. Industrial & Engineering Chemistry Research, 2006, 45, 3438-3446.	3.7	60
47	Reaction engineering for process intensification of supercritical water biomass refining. Journal of Supercritical Fluids, 2015, 96, 21-35.	3.2	60
48	Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2012, 61, 167-174.	3.2	59
49	Enhanced Delivery of Quercetin by Encapsulation in Poloxamers by Supercritical Antisolvent Process. Industrial & Engineering Chemistry Research, 2014, 53, 4318-4327.	3.7	59
50	Experimental study of the operational parameters of a transpiring wall reactor for supercritical water oxidation. Journal of Supercritical Fluids, 2006, 39, 70-79.	3.2	58
51	The influence of Na2SO4 on the CO2 solubility in water at high pressure. Fluid Phase Equilibria, 2005, 238, 220-228.	2.5	57
52	Cool wall reactor for supercritical water oxidation. Journal of Supercritical Fluids, 2004, 31, 41-55.	3.2	56
53	Synthesis of titanium oxide particles in supercritical CO2: Effect of operational variables in the characteristics of the final product. Journal of Supercritical Fluids, 2007, 39, 453-461.	3.2	56
54	Liquidâ^'Vapor Equilibrium of the Systems Butylmethylimidazolium Nitrateâ^'CO ₂ and Hydroxypropylmethylimidazolium Nitrateâ^'CO ₂ at High Pressure: Influence of Water on the Phase Behavior. Journal of Physical Chemistry B, 2008, 112, 13532-13541.	2.6	55

#	Article	IF	CITATIONS
55	Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food and Bioproducts Processing, 2017, 106, 162-170.	3.6	54
56	A predictive approach in modeling and simulation of heat and mass transfer during microwave heating. Application to SFME of essential oil of Lavandin Super. Chemical Engineering Science, 2012, 68, 192-201.	3.8	53
57	Ultrasound-assisted extraction of β-glucans from barley. LWT - Food Science and Technology, 2013, 50, 57-63.	5.2	53
58	Numerical modelling of hydrothermal flames. Micromixing effects over turbulent reaction rates. Journal of Supercritical Fluids, 2009, 50, 146-154.	3.2	52
59	Microwave-assisted extraction of polyphenols from Clinacanthus nutans Lindau medicinal plant: Energy perspective and kinetics modeling. Chemical Engineering and Processing: Process Intensification, 2015, 97, 66-74.	3.6	52
60	Sludge destruction by means of a hydrothermal flame. Optimization of ammonia destruction conditions. Chemical Engineering Journal, 2013, 232, 1-9.	12.7	51
61	Development of barley and yeast β-glucan aerogels for drug delivery by supercritical fluids. Journal of CO2 Utilization, 2017, 22, 262-269.	6.8	50
62	Impregnation of medicinal plant phytochemical compounds into silica and alginate aerogels. Journal of Supercritical Fluids, 2016, 116, 251-263.	3.2	49
63	Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food Chemistry, 2018, 259, 188-195.	8.2	49
64	Supercritical extraction of unsaturated products. Degradation of Î ² -carotene in supercritical extraction processes. Journal of Supercritical Fluids, 2000, 19, 39-44.	3.2	48
65	Quantification of mixing efficiency in turbulent supercritical water hydrothermal reactors. Chemical Engineering Science, 2011, 66, 1576-1589.	3.8	48
66	Formulation of \hat{I}^2 -carotene with soybean lecithin by PGSS (Particles from Gas Saturated) Tj ETQq0 0 0 rgBT /Ove	rloçk_10 Ti	50,302 Td (S
67	Production of Polymorphs of Ibuprofen Sodium by Supercritical Antisolvent (SAS) Precipitation. Crystal Growth and Design, 2009, 9, 2504-2511.	3.0	45
68	Supercritical water processes: Future prospects. Journal of Supercritical Fluids, 2018, 134, 124-132.	3.2	44
69	Formulation of β-carotene with poly-(Îμ-caprolactones) by PGSS process. Powder Technology, 2012, 217, 77-83.	4.2	43
70	A computational fluid dynamics study of supercritical antisolvent precipitation: Mixing effects on particle size. AICHE Journal, 2012, 58, 385-398.	3.6	43
71	Development of water-soluble Î ² -carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloids, 2014, 37, 14-24.	10.7	42
72	Mathematical model of supercritical CO2 adsorption on activated carbon. Journal of Supercritical Fluids, 2004, 32, 193-201.	3.2	40

#	Article	IF	CITATIONS
73	Computational fluid dynamics simulation of a transpiring wall reactor for supercritical water oxidation. Chemical Engineering Journal, 2010, 158, 431-440.	12.7	40
74	Supercritical carbon dioxide fractionation of Lavandin essential oil: Experiments and modeling. Journal of Supercritical Fluids, 2008, 45, 181-188.	3.2	39
75	Production of new hybrid systems for drug delivery by PGSS (Particles from Gas Saturated Solutions) process. Journal of Supercritical Fluids, 2013, 81, 226-235.	3.2	39
76	Experimental study of hydrothermal flames initiation using different static mixer configurations. Journal of Supercritical Fluids, 2009, 50, 240-249.	3.2	38
77	Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor. Cellulose, 2015, 22, 2231-2243.	4.9	38
78	Supercritical water oxidation for energy production by hydrothermal flame as internal heat source. Experimental results and energetic study. Energy, 2015, 90, 1584-1594.	8.8	38
79	Pretreatment Processes of Biomass for Biorefineries: Current Status and Prospects. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 289-310.	6.8	38
80	Aromatics from lignin through ultrafast reactions in water. Green Chemistry, 2019, 21, 1351-1360.	9.0	38
81	Modeling of a Transpiring Wall Reactor for the Supercritical Water Oxidation Using Simple Flow Patterns:Â Comparison to Experimental Results. Industrial & Engineering Chemistry Research, 2005, 44, 3835-3845.	3.7	37
82	Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide. Chemical Engineering Journal, 2011, 166, 1061-1065.	12.7	37
83	Spray Drying Formulation of Polyphenols-Rich Grape Marc Extract: Evaluation of Operating Conditions and Different Natural Carriers. Food and Bioprocess Technology, 2016, 9, 2046-2058.	4.7	37
84	Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2. Journal of Supercritical Fluids, 2009, 49, 233-238.	3.2	36
85	Pressurized hot water extraction of β-glucans from waxy barley. Journal of Supercritical Fluids, 2013, 73, 120-125.	3.2	36
86	Polyphenol-Rich Extracts Obtained from Winemaking Waste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants, 2019, 8, 355.	5.1	36
87	Oxidative stability of sunflower oil extracted with supercritical carbon dioxide. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 1251-1254.	1.9	35
88	Modeling steam distillation of essential oils: Application to lavandin super oil. AICHE Journal, 2008, 54, 909-917.	3.6	35
89	Co-oxidation of ammonia and isopropanol in supercritical water in a tubular reactor. Chemical Engineering Research and Design, 2014, 92, 2568-2574.	5.6	35
90	Production of water soluble quercetin formulations by pressurized ethyl acetate-in-water emulsion technique using natural origin surfactants. Food Hydrocolloids, 2015, 51, 295-304.	10.7	35

#	Article	IF	CITATIONS
91	Thermodynamics of binary mixtures containing organic carbonates. Fluid Phase Equilibria, 1991, 68, 151-161.	2.5	34
92	Supercritical Water Oxidation (SCWO) for Poly(ethylene terephthalate) (PET) Industry Effluents. Industrial & Engineering Chemistry Research, 2000, 39, 4652-4657.	3.7	34
93	Separation of enantiomers by diastereomeric salt formation and precipitation in supercritical carbon dioxide. Journal of Supercritical Fluids, 2007, 40, 67-73.	3.2	34
94	Prediction of vapour—liquid and liquid—liquid equilibria and of enthalpies of mixing in linear carbonates + n-alkane or + cyclohexane mixtures using DISQUAC. Fluid Phase Equilibria, 1991, 64, 1-11.	2.5	33
95	Scale-up for a process of supercritical extraction with adsorption of solute onto active carbon. Application to soil remediation. Journal of Supercritical Fluids, 2002, 24, 123-135.	3.2	33
96	Application of a group contribution equation of state for the thermodynamic modeling of the binary systems CO2–1-butyl-3-methyl imidazolium nitrate and CO2–1-hydroxy-1-propyl-3-methyl imidazolium nitrate. Journal of Supercritical Fluids, 2009, 50, 112-117.	3.2	33
97	Transformation of glucose into added value compounds in a hydrothermal reaction media. Journal of Supercritical Fluids, 2015, 98, 204-210.	3.2	33
98	Energetic approach of biomass hydrolysis in supercritical water. Bioresource Technology, 2015, 179, 136-143.	9.6	33
99	Two-parameter model for mass transfer processes between solid matrixes and supercritical fluids: Analytical solution. Journal of Supercritical Fluids, 2007, 41, 257-266.	3.2	32
100	Determination of Phase Equilibrium (Solidâ^'Liquidâ^'Gas) in Poly-(ε-caprolactone)â^'Carbon Dioxide Systems. Journal of Chemical & Engineering Data, 2010, 55, 2781-2785.	1.9	32
101	Experimental study of hydrothermal flames formation using a tubular injector in a refrigerated reaction chamber. Influence of the operational and geometrical parameters. Journal of Supercritical Fluids, 2011, 59, 140-148.	3.2	32
102	Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation. Journal of Supercritical Fluids, 2007, 41, 126-137.	3.2	31
103	Influence of the enzyme concentration on the phase behaviour for developing a homogeneous enzymatic reaction in ionic liquid–CO2 media. Green Chemistry, 2008, 10, 1049.	9.0	31
104	Experimental Performance and Modeling of a New Cooled-Wall Reactor for the Supercritical Water Oxidation. Industrial & Engineering Chemistry Research, 2009, 48, 6262-6272.	3.7	31
105	Mathematical modeling of the fractionation of liquids with supercritical CO2 in a countercurrent packed column. Journal of Supercritical Fluids, 2007, 39, 304-314.	3.2	30
106	Direct synthesis of hydrogen peroxide in methanol and water using scCO ₂ and N ₂ as diluents. Green Chemistry, 2010, 12, 282-289.	9.0	30
107	Production of stabilized quercetin aqueous suspensions by supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2015, 100, 34-45.	3.2	30
108	Encapsulation of resveratrol on lecithin and β-glucans to enhance its action against Botrytis cinerea. Journal of Food Engineering, 2015, 165, 13-21.	5.2	30

#	Article	IF	CITATIONS
109	Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step. Materials, 2016, 9, 494.	2.9	30
110	Numerical analysis of high-pressure fluid jets: Application to RTD prediction in supercritical reactors. Journal of Supercritical Fluids, 2009, 49, 249-255.	3.2	29
111	Supercritical fluidized bed modeling. Journal of Supercritical Fluids, 2009, 50, 54-60.	3.2	29
112	Production of water-soluble β-carotene micellar formulations by novel emulsion techniques. Chemical Engineering and Processing: Process Intensification, 2013, 74, 90-96.	3.6	29
113	Supercritical antisolvent precipitation of polyphenols from grape marc extract. Journal of Supercritical Fluids, 2016, 118, 54-63.	3.2	29
114	Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation. Nano Research, 2016, 9, 3377-3387.	10.4	29
115	Production of saccharides from sugar beet pulp by ultrafast hydrolysis in supercritical water. Journal of Cleaner Production, 2018, 204, 888-895.	9.3	29
116	Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics. Food and Bioproducts Processing, 2018, 112, 96-107.	3.6	29
117	Particle diameter prediction in supercritical nanoparticle synthesis using three-dimensional CFD simulations. Validation for anatase titanium dioxide production. Chemical Engineering Science, 2009, 64, 3051-3059.	3.8	28
118	Teaching advanced equations of state in applied thermodynamics courses using open source programs. Education for Chemical Engineers, 2011, 6, e114-e121.	4.8	28
119	Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomass. ChemEngineering, 2017, 1, 10.	2.4	28
120	Hydrothermal fractionation of grape seeds in subcritical water to produce oil extract, sugars and lignin. Catalysis Today, 2015, 257, 160-168.	4.4	27
121	Chemical composition and extraction kinetics of Holm oak (Quercus ilex) hemicelluloses using subcritical water. Journal of Supercritical Fluids, 2017, 129, 56-62.	3.2	27
122	Encapsulation of Lavandin Essential Oil in Polyâ€(ϵ aprolactones) by PGSS Process. Chemical Engineering and Technology, 2013, 36, 1187-1192.	1.5	26
123	Fixed-bed extraction of \hat{l}^2 -glucan from cereals by means of pressurized hot water. Journal of Supercritical Fluids, 2013, 82, 122-128.	3.2	26
124	Co-precipitation of anthocyanins of the extract obtained from blackberry residues by pressurized antisolvent process. Journal of Supercritical Fluids, 2018, 137, 81-92.	3.2	26
125	Supercritical CO2 encapsulation of bioactive molecules in carboxylate based MOFs. Journal of CO2 Utilization, 2019, 30, 38-47.	6.8	26
126	β-Glucan recovery from Ganoderma lucidum by means of pressurized hot water and supercritical CO 2. Food and Bioproducts Processing, 2016, 98, 21-28.	3.6	24

#	Article	IF	CITATIONS
127	Supercritical CO2 impregnation of Radiata pine with organic fungicides. Journal of Supercritical Fluids, 2007, 40, 462-469.	3.2	23
128	Modelling residence time distribution in chemical reactors: A novel generalised n-laminar model. Journal of Supercritical Fluids, 2007, 41, 82-91.	3.2	23
129	Direct synthesis of H2O2 in methanol at low pressures over Pd/C catalyst: Semi-continuous process. Applied Catalysis A: General, 2010, 386, 28-33.	4.3	23
130	Estimation of lower flammability limits in high-pressure systems. Application to the direct synthesis of hydrogen peroxide using supercritical and near-critical CO2 and air as diluents. Journal of Supercritical Fluids, 2011, 56, 33-40.	3.2	23
131	Steric and inductive effects in binary mixtures of organic carbonates with aromatic hydrocarbons or tetrachloromethane. Fluid Phase Equilibria, 1991, 69, 81-89.	2.5	22
132	Kinetic model for isopropanol oxidation in supercritical water in hydrothermal flame regime and analysis. Journal of Supercritical Fluids, 2013, 76, 41-47.	3.2	22
133	Influence of water concentration in the viscosities and densities of cellulose dissolving ionic liquids. Correlation of viscosity data. Journal of Chemical Thermodynamics, 2015, 91, 8-16.	2.0	22
134	Measurement and estimation of aromatic plant dielectric properties. Application to low moisture rosemary. Industrial Crops and Products, 2011, 33, 697-703.	5.2	21
135	CFD–Aspen Plus interconnection method. Improving thermodynamic modeling in computational fluid dynamic simulations. Computers and Chemical Engineering, 2018, 113, 152-161.	3.8	21
136	Modelling of the phase behaviour for the direct synthesis of dimethyl carbonate from CO2 and methanol at supercritical or near critical conditions. Journal of Chemical Thermodynamics, 2007, 39, 536-549.	2.0	20
137	Energy recovery from effluents of supercritical water oxidation reactors. Journal of Supercritical Fluids, 2015, 104, 1-9.	3.2	20
138	Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery. Bioresource Technology, 2015, 191, 124-132.	9.6	20
139	RESS process in coating applications in a high pressure fluidized bed environment: Bottom and top spray experiments. Chemical Engineering Journal, 2008, 144, 531-539.	12.7	19
140	Decomposition reaction of H2O2 over Pd/C catalyst in an aqueous medium at high pressure: Detailed kinetic study and modelling. Journal of Supercritical Fluids, 2011, 57, 227-235.	3.2	19
141	Crystallization of Caffeine by Supercritical Antisolvent (SAS) Process: Analysis of Process Parameters and Control of Polymorphism. Crystal Growth and Design, 2012, 12, 1943-1951.	3.0	19
142	Selective transformation of fructose and high fructose content biomass into lactic acid in supercritical water. Catalysis Today, 2015, 255, 80-86.	4.4	19
143	Development of multicore hybrid particles for drug delivery through the precipitation of CO2 saturated emulsions. International Journal of Pharmaceutics, 2015, 478, 9-18.	5.2	19
144	Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: Process scale-upstudy and thermo-economic evaluation. Food and Bioproducts Processing, 2017, 103, 27-38.	3.6	19

#	Article	IF	CITATIONS
145	Nonstationary model of the semicontinuous depolymerization of polycarbonate. AICHE Journal, 2006, 52, 4186-4199.	3.6	18
146	Application of the Anderko–Pitzer EoS to the calculation of thermodynamical properties of systems involved in the supercritical water oxidation process. Journal of Supercritical Fluids, 2007, 42, 27-35.	3.2	18
147	Uncatalysed wet oxidation of d-glucose with hydrogen peroxide and its combination with hydrothermal electrolysis. Carbohydrate Research, 2012, 349, 33-38.	2.3	18
148	Dielectric properties of grape marc: Effect of temperature, moisture content and sample preparation method. Journal of Food Engineering, 2013, 119, 33-39.	5.2	18
149	Melting point depression effect with CO 2 in high melting temperature cellulose dissolving ionic liquids. Modeling with group contribution equation of state. Journal of Supercritical Fluids, 2016, 107, 590-604.	3.2	18
150	Measurement and correlation of the dielectric properties of a grape pomace extraction media. Effect of temperature and composition. Journal of Food Engineering, 2017, 197, 98-106.	5.2	18
151	Simulation of the supercritical CO2 extraction from natural matrices in packed bed columns: User-friendly simulator tool using Excel. Journal of Supercritical Fluids, 2016, 116, 198-208.	3.2	17
152	Scaling up the production of sugars from agricultural biomass by ultrafast hydrolysis in supercritical water. Journal of Supercritical Fluids, 2019, 143, 242-250.	3.2	17
153	Residence time distribution studies of high pressure fluidized bed of microparticles. Journal of Supercritical Fluids, 2008, 44, 433-440.	3.2	16
154	Behavior of an organic solvent drop during the supercritical extraction of emulsions. AICHE Journal, 2010, 56, 1184-1195.	3.6	16
155	Numerical study of the influence of geometrical and operational parameters in the behavior of a hydrothermal flame in vessel reactors. Chemical Engineering Science, 2014, 112, 47-55.	3.8	16
156	Titanium dioxide nanoparticle coating in fluidized bed via supercritical anti-solvent process (SAS). Chemical Engineering Journal, 2015, 279, 425-432.	12.7	16
157	Prediction of residence time distributions in supercritical hydrothermal reactors working at low Reynolds numbers. Chemical Engineering Journal, 2016, 299, 373-385.	12.7	16
158	Tailoring the Structure and Morphology of Low-Molecular-Weight Cellulose Produced during Supercritical Water Hydrolysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 16959-16967.	6.7	16
159	Model assisted supercritical fluid extraction and fractionation of added-value products from tobacco scrap. Journal of Supercritical Fluids, 2021, 167, 105046.	3.2	16
160	Solubility of Diisopropoxititanium Bis(acetylacetonate) in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2008, 53, 204-206.	1.9	14
161	Purification and isolation of β-glucans from barley: Downstream process intensification. Chemical Engineering and Processing: Process Intensification, 2014, 84, 90-97.	3.6	14
162	Effect of low hydrogen to palladium molar ratios in the direct synthesis of H2O2 in water in a trickle bed reactor. Catalysis Today, 2015, 248, 91-100.	4.4	14

#	Article	IF	CITATIONS
163	Redefining conventional biomass hydrolysis models by including mass transfer effects. Kinetic model of cellulose hydrolysis in supercritical water. Chemical Engineering Journal, 2018, 350, 463-473.	12.7	14
164	Mathematical model of supercritical extraction applied to oil seed extraction by CO2+ saturated alcohol – II. Shortcut methods. Journal of Supercritical Fluids, 2001, 20, 245-255.	3.2	13
165	Hydrogenation and decomposition kinetic study of H2O2 over Pd/C catalyst in an aqueous medium at high CO2 pressure. Journal of Supercritical Fluids, 2013, 74, 80-88.	3.2	13
166	Optimisation of the operation variables of a supercritical water oxidation process. Water Science and Technology, 2000, 42, 107-113.	2.5	12
167	Green HAZOP analysis: incorporating green engineering into design, assessment and implementation of chemical processes. Green Chemistry, 2007, 9, 111-124.	9.0	12
168	Solubility of β-carotene in poly-(ɛ-caprolactone) particles produced in colloidal state by Supercritical Fluid Extraction of Emulsions (SFEE). Journal of Supercritical Fluids, 2013, 84, 105-112.	3.2	12
169	Lycopene solubility in mixtures of carbon dioxide and ethyl acetate. Journal of Supercritical Fluids, 2013, 75, 6-10.	3.2	12
170	Supercritical CO2 extraction of solids using aqueous ethanol as static modifier is a two-step mass transfer process. Journal of Supercritical Fluids, 2019, 143, 179-190.	3.2	12
171	Impregnation of açaÃ-residue extracts in silica-aerogel. Journal of Supercritical Fluids, 2019, 146, 120-127.	3.2	12
172	Gasification of charcoal using supercritical CO2 at high pressures. Journal of Supercritical Fluids, 2007, 43, 228-235.	3.2	11
173	Countercurrent de-acidification of vegetable oils using supercritical CO2: Holdup and RTD experiments. Journal of Supercritical Fluids, 2008, 45, 238-244.	3.2	11
174	Solubility of Polycaprolactone in Supercritical Carbon Dioxide with Ethanol as Cosolvent. Journal of Chemical & Engineering Data, 2009, 54, 962-965.	1.9	11
175	Improvement of Essential Oil Steam Distillation by Microwave Pretreatment. Industrial & Engineering Chemistry Research, 2011, 50, 4667-4671.	3.7	11
176	Optimization and modelling of the supercritical CO2 deposition of Co O nanoparticles in MCM41. Journal of Supercritical Fluids, 2016, 110, 47-55.	3.2	11
177	Supercritical Water Oxidation (SCWO). Application to industrial wastewater treatment. Industrial Chemistry Library, 2001, , 509-526.	0.1	10
178	Safety Study in a Supercritical Extraction Plant. Chemical Engineering and Technology, 2003, 26, 449-461.	1.5	10
179	Experimental and theoretical study of the influence of pressure on SCWO. AICHE Journal, 2006, 52, 3958-3966.	3.6	10
180	Measurement and modelling of mass transport properties during the supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2017, 129, 36-47.	3.2	10

#	Article	IF	CITATIONS
181	Fluidization of nanoparticles agglomerates enhanced by supercritical carbon dioxide. Powder Technology, 2017, 318, 242-247.	4.2	10
182	Perspectives on the integration of a supercritical fluid extraction plant to a sugarcane biorefinery: thermo-economical evaluation of CO2 recycle systems. Food Science and Technology, 2018, 38, 13-18.	1.7	10
183	Ultrafast hydrolysis of inulin in supercritical water: Fructooligosaccharides reaction pathway and Jerusalem artichoke valorization. Industrial Crops and Products, 2019, 133, 72-78.	5.2	10
184	Recent Developments of Supercritical Water Oxidation: A Patents Review. Recent Patents on Chemical Engineering, 2011, 4, 219-230.	0.5	10
185	Precipitation of Mandelic Acid with a Supercritical Antisolvent Process:  Experimental and Theoretical Analysis, Optimization, and Scaleup. Industrial & Engineering Chemistry Research, 2007, 46, 1552-1562.	3.7	9
186	Integrating reduced graphene oxide with microwave-subcritical water for cellulose depolymerization. Catalysis Science and Technology, 2018, 8, 5434-5444.	4.1	9
187	Structure–response relationship of carotenoid bioaccessibility and antioxidant activity as affected by the hydroxylation and cyclization of their terminal end groups. Food Research International, 2014, 66, 107-114.	6.2	8
188	Effect of immunization on reproducvive performance, embryo quality and progesterone in Rasa Aragonesa ewes actively immunized against androstenedione or passively immunized against testosterone. Theriogenology, 1991, 35, 799-813.	2.1	7
189	Patents Review on Lignocellulosic Biomass Processing Using Ionic Liquids. Recent Patents on Engineering, 2012, 6, 159-181.	0.4	7
190	Ultrafast heating by high efficient biomass direct mixing with supercritical water. Chemical Engineering Journal, 2019, 378, 122199.	12.7	7
191	Formulation of açaÃ-(E. oleracea Mart.) Pulp and seeds extracts by co-precipitation in Supercritical Antisolvent (SAS) technology. Journal of Supercritical Fluids, 2021, 169, 105090.	3.2	7
192	Production of water-soluble quercetin formulations by antisolvent precipitation and supercritical drying. Journal of Supercritical Fluids, 2015, 104, 281-290.	3.2	6
193	Barley and yeast β-glucans as new emulsifier agents for the development of aqueous natural antifungal formulations. Carbohydrate Polymers, 2017, 174, 1114-1120.	10.2	6
194	A green desuperheater for an energetic efficient alternative to the decompression valve in biomass supercritical water ultrafast hydrolysis process. Journal of Supercritical Fluids, 2018, 133, 704-715.	3.2	6
195	Phenolic Compounds Extraction of Arbutus unedo L.: Process Intensification by Microwave Pretreatment. Processes, 2020, 8, 298.	2.8	6
196	Base-catalysed depolymerization of lignins in supercritical water: Influence of lignin nature and valorisation of pulping and biorefinery by-products. Biomass and Bioenergy, 2022, 163, 106536.	5.7	6
197	Embryo losses in Rasa Aragonesa ewes actively immunized against androstenedione or passively immunized against testosterone. Theriogenology, 1991, 35, 715-724.	2.1	5
198	Solubility of Bisphenol A in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2011, 56, 3910-3913.	1.9	5

#	Article	IF	CITATIONS
199	Bubble points of the systems isopropanol–water, isopropanol–water–sodium acetate and isopropanol–water–sodium oleate at high pressure. Fluid Phase Equilibria, 2006, 244, 78-85.	2.5	4
200	Carbon Dioxide Hydrogenation by Means of Plasmonic Resonance Activation in Silica Aerogel Media. Materials, 2018, 11, 2134.	2.9	4
201	A feasibility study on green biorefinery of high lignin content agro-food industry waste through supercritical water treatment. Journal of Cleaner Production, 2021, 323, 129110.	9.3	4
202	Behaviour of a cooled wall reactor for supercritical water oxidation. Process Technol, 1996, , 121-126.	0.1	2
203	Study of alternatives for the design of a mobile unit for wastewater treatment by supercritical water oxidation. Journal of Chemical Technology and Biotechnology, 2001, 76, 257-264.	3.2	1
204	Quantification of mixing efficiency in turbulent supercritical water hydrothermal reactors. Chemical Engineering Science, 2011, , .	3.8	1
205	Supercritical Water Oxidation (SCWO) of Solid, Liquid and Gaseous Fuels for Energy Generation. Biofuels and Biorefineries, 2014, , 401-426.	0.5	1
206	A Green Desuperheater for an Energetic Efficient Alternative to the Decompression Valve in Supercritical Water Hydrolysis Process. CFD Simulation Computer Aided Chemical Engineering, 2017, 40, 2905-2910.	0.5	1
207	Recent Developments of Supercritical Water Oxidation: A Patents Review. Recent Patents on Chemical Engineering, 2011, 4, 219-230.	0.5	1
208	Reactors for Supercritical Water Oxidation Processes. Biofuels and Biorefineries, 2014, , 179-205.	0.5	0