Berl R Oakley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3854569/publications.pdf Version: 2024-02-01

REDI R OAKLEV

#	Article	IF	CITATIONS
1	Fungally Derived Isoquinoline Demonstrates Inducer-Specific Tau Aggregation Inhibition. Biochemistry, 2021, 60, 1658-1669.	2.5	7
2	Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers, 2020, 12, 2221.	3.7	17
3	The Pheromone Module SteC-MkkB-MpkB-SteD-HamE Regulates Development, Stress Responses and Secondary Metabolism in Aspergillus fumigatus. Frontiers in Microbiology, 2020, 11, 811.	3.5	15
4	The tetrameric pheromone module SteCâ€MkkBâ€MpkBâ€SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in <scp><i>Aspergillus flavus</i></scp> . Cellular Microbiology, 2020, 22, e13192.	2.1	26
5	Overexpression of an LaeA-like Methyltransferase Upregulates Secondary Metabolite Production in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2019, 14, 1643-1651.	3.4	21
6	Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans. PLoS Genetics, 2019, 15, e1008053.	3.5	41
7	SUMOlock reveals a more complete Aspergillus nidulans SUMOylome. Fungal Genetics and Biology, 2019, 127, 50-59.	2.1	8
8	Abstract 3059: Identification and validation of an Aspergillus <i>nidulans</i> secondary metabolite derivative as an inhibitor of the Musashi1-RNA interaction. , 2019, , .		0
9	New multi-marker strains and complementing genes for Aspergillus nidulans molecular biology. Fungal Genetics and Biology, 2018, 111, 1-6.	2.1	10
10	Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2018, 13, 3193-3205.	3.4	35
11	Abstract 2863: Dissecting the structural basis for inhibitors of RNA-binding proteins. , 2018, , .		0
12	Overexpression of a three-gene conidial pigment biosynthetic pathway in Aspergillus nidulans reveals the first NRPS known to acetylate tryptophan. Fungal Genetics and Biology, 2017, 101, 1-6.	2.1	21
13	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
14	A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in <i>Pestalotiopsis fici</i> . Molecular Microbiology, 2017, 105, 469-483.	2.5	39
15	Discovery of McrA, a master regulator of <i>Aspergillus</i> secondary metabolism. Molecular Microbiology, 2017, 103, 347-365.	2.5	73
16	The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS ONE, 2017, 12, e0175471.	2.5	45
17	Abstract 1133: Discovery of novel small molecule inhibitors of RNA-binding protein Musashi-1. , 2017, , .		1
18	Development of Genetic Dereplication Strains in <i>Aspergillus nidulans</i> Results in the Discovery of Aspercryptin. Angewandte Chemie, 2016, 128, 1694-1697.	2.0	8

#	Article	IF	CITATIONS
19	Development of Genetic Dereplication Strains in <i>Aspergillus nidulans</i> Results in the Discovery of Aspercryptin. Angewandte Chemie - International Edition, 2016, 55, 1662-1665.	13.8	139
20	Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in <i>Aspergillus nidulans</i> Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS Chemical Biology, 2016, 11, 2275-2284.	3.4	105
21	Onychomycosis and its Chemotherapy. Current Medicinal Chemistry, 2016, 23, 1609-1624.	2.4	Ο
22	Spatial regulation of a common precursor from two distinct genes generates metabolite diversity. Chemical Science, 2015, 6, 5913-5921.	7.4	31
23	The Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors. Fungal Genetics and Biology, 2015, 82, 51-55.	2.1	9
24	Azaphilones Inhibit Tau Aggregation and Dissolve Tau Aggregates <i>in Vitro</i> . ACS Chemical Neuroscience, 2015, 6, 751-760.	3.5	42
25	γ-Tubulin complexes in microtubule nucleation and beyond. Molecular Biology of the Cell, 2015, 26, 2957-2962.	2.1	104
26	Spatial regulation of the spindle assembly checkpoint and anaphaseâ€promoting complex in <scp><i>A</i></scp> <i>spergillus nidulans</i> . Molecular Microbiology, 2015, 95, 442-457.	2.5	8
27	Inhibition of Tau Aggregation by Three Aspergillus nidulans Secondary Metabolites: 2,ï‰-Dihydroxyemodin, Asperthecin, and Asperbenzaldehyde. Planta Medica, 2014, 80, 77-85.	1.3	38
28	Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in <i>Aspergillus nidulans</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 433-442.	3.0	115
29	Rational Domain Swaps Reveal Insights about Chain Length Control by Ketosynthase Domains in Fungal Nonreducing Polyketide Synthases. Organic Letters, 2014, 16, 1676-1679.	4.6	31
30	An Efficient System for Heterologous Expression of Secondary Metabolite Genes in Aspergillus nidulans. Journal of the American Chemical Society, 2013, 135, 7720-7731.	13.7	180
31	Engineering Fungal Nonreducing Polyketide Synthase by Heterologous Expression and Domain Swapping. Organic Letters, 2013, 15, 756-759.	4.6	29
32	Molecular Genetic Characterization of the Biosynthesis Cluster of a Prenylated Isoindolinone Alkaloid Aspernidine A in <i>Aspergillus nidulans</i> . Organic Letters, 2013, 15, 2862-2865.	4.6	39
33	Recent Progress in the Chemotherapy of Human Fungal Diseases. Emphasis on 1,3-β-Glucan Synthase and Chitin Synthase Inhibitors. Current Medicinal Chemistry, 2013, 20, 4859-4887.	2.4	7
34	The Functions of Myosin II and Myosin V Homologs in Tip Growth and Septation in Aspergillus nidulans. PLoS ONE, 2012, 7, e31218.	2.5	87
35	γ-Tubulin plays a key role in inactivating APC/CCdh1 at the G1–S boundary. Journal of Cell Biology, 2012, 198, 785-791.	5.2	22
36	Overexpression of the <i><scp>A</scp>spergillus nidulans</i> histone 4 acetyltransferase <scp>EsaA</scp> increases activation of secondary metabolite production. Molecular Microbiology, 2012, 86, 314-330.	2.5	116

#	Article	IF	CITATIONS
37	Identification and molecular genetic analysis of the cichorine gene cluster in Aspergillus nidulans. MedChemComm, 2012, 3, 997.	3.4	48
38	Molecular Genetic Characterization of a Cluster in <i>A. terreus</i> for Biosynthesis of the Meroterpenoid Terretonin. Organic Letters, 2012, 14, 5684-5687.	4.6	80
39	Reengineering an Azaphilone Biosynthesis Pathway in <i>Aspergillus nidulans</i> To Create Lipoxygenase Inhibitors. Organic Letters, 2012, 14, 972-975.	4.6	38
40	Two Separate Gene Clusters Encode the Biosynthetic Pathway for the Meroterpenoids Austinol and Dehydroaustinol in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2012, 134, 4709-4720.	13.7	223
41	Tools for Manipulation of Secondary Metabolism Pathways: Rapid Promoter Replacements and Gene Deletions in Aspergillus nidulans. Methods in Molecular Biology, 2012, 944, 143-161.	0.9	30
42	Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis. Applied Microbiology and Biotechnology, 2012, 96, 739-748.	3.6	49
43	Illuminating the Diversity of Aromatic Polyketide Synthases in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2012, 134, 8212-8221.	13.7	168
44	Engineering of an "Unnatural―Natural Product by Swapping Polyketide Synthase Domains in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2011, 133, 13314-13316.	13.7	56
45	Genome-Based Deletion Analysis Reveals the Prenyl Xanthone Biosynthesis Pathway in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2011, 133, 4010-4017.	13.7	154
46	Microtubule dynamics in mitosis in Aspergillus nidulans. Fungal Genetics and Biology, 2011, 48, 998-999.	2.1	9
47	Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology, 2011, 15, 137-143.	6.1	181
48	Cryptic Aspergillus nidulans Antimicrobials. Applied and Environmental Microbiology, 2011, 77, 3669-3675.	3.1	29
49	Unraveling polyketide synthesis in members of the genus Aspergillus. Applied Microbiology and Biotechnology, 2010, 86, 1719-1736.	3.6	73
50	Î ³ -Tubulin regulates the anaphase-promoting complex/cyclosome during interphase. Journal of Cell Biology, 2010, 190, 317-330.	5.2	39
51	Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. Microbiology (United Kingdom), 2010, 156, 3522-3531.	1.8	29
52	Characterization of the <i>Aspergillus nidulans</i> Monodictyphenone Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 2067-2074.	3.1	159
53	Molecular genetic analysis of the orsellinic acid/F9775 genecluster of Aspergillus nidulans. Molecular BioSystems, 2010, 6, 587-593.	2.9	118
54	In vivo analysis of the functions of Î ³ -tubulin-complex proteins. Journal of Cell Science, 2009, 122, 4218-4227.	2.0	79

#	Article	IF	CITATIONS
55	Timely Septation Requires SNAD-dependent Spindle Pole Body Localization of the Septation Initiation Network Components in the Filamentous Fungus <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2009, 20, 2874-2884.	2.1	44
56	Mlp1 Acts as a Mitotic Scaffold to Spatially Regulate Spindle Assembly Checkpoint Proteins in <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2009, 20, 2146-2159.	2.1	57
57	Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 2009, 5, 462-464.	8.0	358
58	A Gene Cluster Containing Two Fungal Polyketide Synthases Encodes the Biosynthetic Pathway for a Polyketide, Asperfuranone, in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2009, 131, 2965-2970.	13.7	292
59	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	2.1	99
60	Molecular Genetic Mining of the Aspergillus Secondary Metabolome: Discovery of the Emericellamide Biosynthetic Pathway. Chemistry and Biology, 2008, 15, 527-532.	6.0	193
61	Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genetics and Biology, 2008, 45, 728-737.	2.1	47
62	The Tip Growth Apparatus of <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2008, 19, 1439-1449.	2.1	261
63	Identification and Characterization of the Asperthecin Gene Cluster of <i>Aspergillus nidulans</i> . Applied and Environmental Microbiology, 2008, 74, 7607-7612.	3.1	149
64	Fluorescent Labels for Intracellular Structures and Organelles. Mycology, 2007, , 513-525.	0.5	0
65	Advances in Gene Manipulations Using Aspergillus nidulans. Mycology, 2007, , 493-511.	0.5	0
66	Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique. Nature Protocols, 2006, 1, 2517-2526.	12.0	117
67	Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 2006, 1, 3111-3120.	12.0	701
68	A Versatile and Efficient Gene-Targeting System for Aspergillus nidulans. Genetics, 2006, 172, 1557-1566.	2.9	559
69	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	27.8	1,250
70	Cytoplasmic Dynein's Mitotic Spindle Pole Localization Requires a Functional Anaphase-promoting Complex, Î ³ -Tubulin, and NUDF/LIS1 in Aspergillus nidulans. Molecular Biology of the Cell, 2005, 16, 3591-3605.	2.1	23
71	The Role of Microtubules in Rapid Hyphal Tip Growth of Aspergillus nidulans. Molecular Biology of the Cell, 2005, 16, 918-926.	2.1	187
72	γ-Tubulin Plays an Essential Role in the Coordination of Mitotic Events. Molecular Biology of the Cell, 2004, 15, 1374-1386.	2.1	57

#	Article	IF	CITATIONS
73	Dual-Color Imaging of Nuclear Division and Mitotic Spindle Elongation in Live Cells of Aspergillus nidulans. Eukaryotic Cell, 2004, 3, 553-556.	3.4	16
74	Tubulins in Aspergillus nidulans. Fungal Genetics and Biology, 2004, 41, 420-427.	2.1	58
75	Microtubule nucleation. Current Opinion in Cell Biology, 2003, 15, 111-117.	5.4	177
76	Expression of Arabidopsis γ-Tubulin in Fission Yeast Reveals Conserved and Novel Functions of γ-Tubulin. Plant Physiology, 2003, 133, 1926-1934.	4.8	24
77	Microtubule Organization Requires Cell Cycle-dependent Nucleation at Dispersed Cytoplasmic Sites: Polar and Perinuclear Microtubule Organizing Centers in the Plant PathogenUstilago maydis. Molecular Biology of the Cell, 2003, 14, 642-657.	2.1	102
78	TINA Interacts with the NIMA Kinase inAspergillus nidulansand Negatively Regulates Astral Microtubules during Metaphase Arrest. Molecular Biology of the Cell, 2003, 14, 3169-3179.	2.1	29
79	Spindle Formation inAspergillusIs Coupled to Tubulin Movement into the Nucleus. Molecular Biology of the Cell, 2003, 14, 2192-2200.	2.1	57
80	γ-Tubulin and the C-Terminal Motor Domain Kinesin-like Protein, KLPA, Function in the Establishment of Spindle Bipolarity in <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2001, 12, 3161-3174.	2.1	45
81	Alanine-scanning Mutagenesis of Aspergillus γ-Tubulin Yields Diverse and Novel Phenotypes. Molecular Biology of the Cell, 2001, 12, 2119-2136.	2.1	56
82	Gamma tubulin in plant cells. Methods in Cell Biology, 2001, 67, 195-212.	1.1	19
83	Centrosome-independent mitotic spindle formation in vertebrates. Current Biology, 2000, 10, 59-67.	3.9	457
84	An abundance of tubulins. Trends in Cell Biology, 2000, 10, 537-542.	7.9	97
85	A Mutation in γ-Tubulin Alters Microtubule Dynamics and Organization and Is Synthetically Lethal with the Kinesin-like Protein Pkl1p. Molecular Biology of the Cell, 2000, 11, 1225-1239.	2.1	119
86	The Î ³ -Tubulin Gene Family in Humans. Genomics, 2000, 67, 164-170.	2.9	48
87	Unusual Antimicrotubule Activity of the Antifungal Agent Spongistatin 1. Antimicrobial Agents and Chemotherapy, 1999, 43, 1993-1999.	3.2	24
88	γ-Tubulin. Current Topics in Developmental Biology, 1999, 49, 27-54.	2.2	75
89	.GAMMATubulin at Ten. Progress and Prospects Cell Structure and Function, 1999, 24, 365-372.	1.1	38
90	Mitosis in Wild-Type and β-Tubulin Mutant Strains ofAspergillus nidulans. Fungal Genetics and Biology, 1998. 24. 146-160.	2.1	32

#	Article	IF	CITATIONS
91	Chapter 18 Methods for Isolating and Analyzing Mitotic Mutants in Aspergillus nidulans. Methods in Cell Biology, 1998, 61, 347-368.	1.1	1
92	Characterization of γ-tubulin complexes inAspergillus nidulans and detection of putative γ-tubulin interacting proteins. , 1997, 37, 149-158.		34
93	A nice ring to the centrosome. Nature, 1995, 378, 555-556.	27.8	38
94	γ-Tubulin and the fungal microtubule cytoskeleton. Canadian Journal of Botany, 1995, 73, 352-358.	1.1	8
95	Purification and Characterization of Assembly-Competent Tubulin from Aspergillus nidulans. Biochemistry, 1995, 34, 6373-6381.	2.5	18
96	Î ³ -Tubulin: the microtubule organizer?. Trends in Cell Biology, 1992, 2, 1-5.	7.9	182
97	Amino acid alterations in thebenA (β-tubulin) gene ofAspergillus nidulans that confer benomyl resistance. Cytoskeleton, 1992, 22, 170-174.	4.4	146
98	Î ³ -Tubulin is present in Drosophila melanogaster and homo sapiens and is associated with the centrosome. Cell, 1991, 65, 817-823.	28.9	415
99	Cell Cycle and Tubulin Mutations in Filamentous Fungi. , 1991, , 107-125.		10
100	Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Current Genetics, 1990, 17, 129-132.	1.7	71
101	Identification of an amino acid substitution in thebenA, ?-tubulin gene ofAspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cytoskeleton, 1990, 17, 87-94.	4.4	100
102	γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell, 1990, 61, 1289-1301.	28.9	560
103	Identification of Î ³ -tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature, 1989, 338, 662-664.	27.8	617
104	Mitotic gene conversion, reciprocal recombination and gene replacement at the benA, beta-tubulin, locus of Aspergillus nidulans. Molecular Genetics and Genomics, 1988, 213, 339-345.	2.4	37
105	Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene, 1987, 61, 385-399.	2.2	186
106	Cloning of the riboB locus of Aspergillus nidulans. Gene, 1987, 53, 293-298.	2.2	167
107	Conditionally lethal tubA $\hat{l}\pm$ -tubulin mutations in Aspergillus nidulans. Molecular Genetics and Genomics, 1987, 208, 135-144.	2.4	35
108	Microtubule mutants. Canadian Journal of Biochemistry and Cell Biology, 1985, 63, 479-488.	1.3	24

#	ARTICLE	IF	CITATIONS
109	Isolation and characterization of cold-sensitive mutations at the benA, β-tubulin, locus of Aspergillus nidulans. Molecular Genetics and Genomics, 1985, 201, 56-64.	2.4	21
110	Chapter 6 Molecular and Genetic Methods for Studying Mitosis and Spindle Proteins in Aspergillus nidulans. Methods in Cell Biology, 1982, 25 Pt B, 107-130.	1.1	14
111	A β-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell, 1981, 24, 837-845.	28.9	187
112	Mitotic Mutants. , 1981, , 181-196.		4
113	A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry, 1980, 105, 361-363.	2.4	3,507
114	Nuclear movement is β-tubulin-dependent in Aspergillus nidulans. Cell, 1980, 19, 255-262.	28.9	254
115	Evidence for a double-helically coiled toroidal chromonema in the dinoflagellate chromosome. Chromosoma, 1979, 70, 277-291.	2.2	51
116	Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia. BioSystems, 1978, 10, 361-369.	2.0	58
117	Some advantages and limitations of mitosis as a phylogenetic criterion. BioSystems, 1978, 10, 59-64.	2.0	18
118	Mitosis and cell division in <i>Cryptomonas</i> (Cryptophyceae). Canadian Journal of Botany, 1977, 55, 2789-2800.	1.1	35
119	The ultrastructure of mitosis inChroomonas salina (Cryptophyceae). Protoplasma, 1976, 88, 241-254.	2.1	50
120	Mitosis in the dinoflagellate Amphidinium carterae. BioSystems, 1975, 7, 305.	2.0	1
121	Mitosis in the Cryptophyceae (reply). Nature, 1974, 247, 300-300.	27.8	2
122	Mitosis in the Cryptophyceae. Nature, 1973, 244, 521-522.	27.8	30
123	The Cytoskeleton in Filamentous Fungi. , 0, , 207-223.		2