List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 2014, 225, 34-51.	2.2	438
2	BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosensors and Bioelectronics, 2015, 66, 251-258.	5.3	282
3	CO 2 -activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chemical Engineering Journal, 2017, 317, 493-502.	6.6	240
4	Film Thickness Dependence of Protein Adsorption from Blood Serum and Plasma onto Poly(sulfobetaine)-Grafted Surfaces. Langmuir, 2008, 24, 9211-9214.	1.6	220
5	Non-mercury catalytic acetylene hydrochlorination over bimetallic Au–Co(iii)/SAC catalysts for vinyl chloride monomer production. Green Chemistry, 2013, 15, 829.	4.6	148
6	High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chemical Engineering and Processing: Process Intensification, 2012, 57-58, 25-41.	1.8	146
7	The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT study. Fuel, 2013, 108, 682-690.	3.4	140
8	Synergistic Effect of F [–] Doping and LiF Coating on Improving the High-Voltage Cycling Stability and Rate Capacity of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 34153-34162.	4.0	129
9	DNA-Based Platinum Nanozymes for Peroxidase Mimetics. Journal of Physical Chemistry C, 2014, 118, 18116-18125.	1.5	116
10	Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Applied Catalysis B: Environmental, 2021, 293, 120215.	10.8	112
11	Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au–Co(III)–Cu(II) catalysts. Journal of Catalysis, 2014, 316, 141-148.	3.1	108
12	Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 438-442.	0.4	106
13	Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Frontiers of Chemical Science and Engineering, 2016, 10, 16-38.	2.3	97
14	A DFT screening of single transition atoms supported on MoS ₂ as highly efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale, 2020, 12, 10035-10043.	2.8	94
15	Highly Efficient Ru@IL/AC To Substitute Mercuric Catalyst for Acetylene Hydrochlorination. ACS Catalysis, 2017, 7, 3510-3520.	5.5	93
16	Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Frontiers of Chemical Science and Engineering, 2011, 5, 514-520.	2.3	92
17	Study on performance mechanism of pour point depressants with differential scanning calorimeter and X-ray diffraction methods⋆. Fuel, 2003, 82, 1419-1426.	3.4	86
18	Boron and Nitrogen Codoped Carbon Layers of LiFePO ₄ Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20134-20143.	4.0	85

#	Article	IF	CITATIONS
19	Deactivation mechanism of AuCl3 catalyst in acetylene hydrochlorination reaction: a DFT study. RSC Advances, 2012, 2, 4814.	1.7	84
20	Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. Journal of Membrane Science, 2016, 520, 19-28.	4.1	84
21	Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 2016, 189, 56-64.	10.8	83
22	Active ruthenium species in acetylene hydrochlorination. Applied Catalysis A: General, 2014, 488, 28-36.	2.2	82
23	Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase. Biosensors and Bioelectronics, 2016, 77, 549-556.	5.3	82
24	CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study. Fuel Processing Technology, 2014, 124, 61-69.	3.7	79
25	A Cross-Linking Succinonitrile-Based Composite Polymer Electrolyte with Uniformly Dispersed Vinyl-Functionalized SiO ₂ Particles for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23668-23675.	4.0	78
26	Ethanol steam reforming reactions over Al2O3·SiO2-supported Ni–La catalysts. Fuel, 2009, 88, 511-518.	3.4	77
27	Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 29820-29828.	4.0	73
28	Boosting electrocatalytic hydrogen generation by a renewable porous wood membrane decorated with Fe-doped NiP alloys. Journal of Energy Chemistry, 2021, 56, 23-33.	7.1	72
29	Amino-functionalized MXenes for efficient removal of Cr(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126388.	2.3	71
30	MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. Journal of Industrial and Engineering Chemistry, 2016, 44, 146-154.	2.9	70
31	Acetylene hydrochlorination over bimetallic Ru-based catalysts. RSC Advances, 2013, 3, 21062.	1.7	69
32	DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols. Biosensors and Bioelectronics, 2015, 74, 1038-1046.	5.3	69
33	Non-mercury catalytic acetylene hydrochlorination over bimetallic Au–Ba(<scp>ii</scp>)/AC catalysts. Catalysis Science and Technology, 2015, 5, 1870-1877.	2.1	65
34	CFD modeling of hydrodynamic characteristics of a gas–liquid two-phase stirred tank. Applied Mathematical Modelling, 2014, 38, 63-92.	2.2	64
35	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over activated-carbon-supported Pd–Ag alloy catalysts. Catalysis Science and Technology, 2016, 6, 809-817.	2.1	64
36	Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chemical Engineering Journal, 2021, 426, 131234.	6.6	63

#	Article	IF	CITATIONS
37	N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chemical Engineering Journal, 2019, 371, 118-129.	6.6	62
38	Titanium and fluorine synergetic modification improves the electrochemical performance of Li(Ni _{0.8} Co _{0.1} Mn _{0.1})O ₂ . Journal of Materials Chemistry A, 2021, 9, 9354-9363.	5.2	62
39	Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts. Catalysis Science and Technology, 2015, 5, 5174-5184.	2.1	61
40	DFT and MM calculation: the performance mechanism of pour point depressants study. Fuel, 2004, 83, 315-326.	3.4	60
41	Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material. Journal of Power Sources, 2016, 302, 274-282.	4.0	60
42	Phosphorus-doped carbon supports enhance gold-based catalysts for acetylene hydrochlorination. RSC Advances, 2014, 4, 15877-15885.	1.7	59
43	Bimetallic Au–Ni/CSs catalysts for acetylene hydrochlorination. Catalysis Science and Technology, 2014, 4, 4426-4432.	2.1	58
44	Clutathione-stabilized palladium nanozyme for colorimetric assay of silver(<scp>i</scp>) ions. Analyst, The, 2015, 140, 6676-6683.	1.7	58
45	A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride. Journal of Membrane Science, 2016, 504, 185-195.	4.1	58
46	Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	10.2	57
47	Controllable synthesis of nano-sized LiFePO 4 /C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries. Electrochimica Acta, 2015, 173, 448-457.	2.6	56
48	LiFePO ₄ nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Advances, 2015, 5, 9745-9751.	1.7	56
49	Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles. Separation and Purification Technology, 2013, 107, 11-18.	3.9	55
50	Bimetallic Au–Sn/AC catalysts for acetylene hydrochlorination. Journal of Industrial and Engineering Chemistry, 2016, 35, 177-184.	2.9	55
51	Novel diamine-modified composite nanofiltration membranes with chlorine resistance using monomers of 1,2,4,5-benzene tetracarbonyl chloride and m-phenylenediamine. Journal of Materials Chemistry A, 2015, 3, 8816-8824.	5.2	54
52	Supercritical Water Oxidation vs Supercritical Water Gasification: Which Process Is Better for Explosive Wastewater Treatment?. Industrial & Engineering Chemistry Research, 2015, 54, 1251-1260.	1.8	54
53	An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. Journal of Alloys and Compounds, 2019, 776, 43-51.	2.8	54
54	A Review of Challenges and Recent Progress in Supercritical Water Oxidation of Wastewater. Chemical Engineering Communications, 2017, 204, 265-282.	1.5	53

#	Article	IF	CITATIONS
55	3D porous Ca-modified Mg-Zr mixed metal oxide for fluoride adsorption. Chemical Engineering Journal, 2022, 428, 131371.	6.6	52
56	Growth Mechanisms of Fluorescent Silver Clusters Regulated by Polymorphic DNA Templates: A DFT Study. Journal of Physical Chemistry B, 2012, 116, 1655-1665.	1.2	51
57	Theoretical Study of the Prohibited Mechanism for Ethylene/Vinyl Acetate Co-polymers to the Wax Crystal Growth. Journal of Physical Chemistry B, 2008, 112, 36-43.	1.2	49
58	Sulfur transformation in coal during supercritical water gasification. Fuel, 2016, 186, 394-404.	3.4	49
59	Highly active and stable CeO2–SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol. Fuel Processing Technology, 2016, 143, 219-224.	3.7	48
60	The single-Mo-atom-embedded-graphdiyne monolayer with ultra-low onset potential as high efficient electrocatalyst for N2 reduction reaction. Applied Surface Science, 2020, 506, 144941.	3.1	48
61	Preparation of La2NiO4 catalyst and catalytic performance for partial oxidation of methane. Journal of Molecular Catalysis A, 2007, 269, 254-259.	4.8	47
62	Ru/N-AC catalyst to produce vinyl chloride from acetylene and 1,2-dichloroethane. Catalysis Science and Technology, 2016, 6, 1402-1409.	2.1	47
63	MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination. Journal of Materials Science, 2018, 53, 4913-4926.	1.7	47
64	Metal organic frameworks derived porous lithium iron phosphate with continuous nitrogen-doped carbon networks for lithium ion batteries. Journal of Power Sources, 2016, 304, 42-50.	4.0	46
65	Interactions of daidzin with intramolecular G-quadruplex. FEBS Letters, 2006, 580, 4905-4910.	1.3	45
66	Non-mercury catalytic acetylene hydrochlorination over Ru catalysts enhanced by carbon nanotubes. RSC Advances, 2015, 5, 9002-9008.	1.7	45
67	Effects of potassium additive on the activity of Ru catalyst for acetylene hydrochlorination. RSC Advances, 2015, 5, 37774-37779.	1.7	45
68	Supercritical water gasification of naphthalene over iron oxide catalyst: A ReaxFF molecular dynamics study. International Journal of Hydrogen Energy, 2019, 44, 30486-30498.	3.8	45
69	Silver Nanomaterials Regulated by Structural Competition of G-/C-Rich Oligonucleotides. Journal of Physical Chemistry C, 2011, 115, 10370-10379.	1.5	42
70	Ethanol steam reforming over Ni-Cu/Al2O3-MyOz (M = Si, La, Mg, and Zn) catalysts. Journal of Natural Gas Chemistry, 2009, 18, 55-65.	1.8	41
71	Nitrogen functional groups on an activated carbon surface to effect the ruthenium catalysts in acetylene hydrochlorination. RSC Advances, 2015, 5, 86172-86178.	1.7	40
72	H2 and CO production through coking wastewater in supercritical water condition: ReaxFF reactive molecular dynamics simulation. International Journal of Hydrogen Energy, 2017, 42, 9667-9678.	3.8	40

#	Article	IF	CITATIONS
73	Catalytic Performance of Oligonucleotide-Templated Pt Nanozyme Evaluated by Laccase Substrates. Catalysis Letters, 2017, 147, 2144-2152.	1.4	39
74	Hydrochlorination of acetylene catalyzed by an activated carbon supported chlorotriphenylphosphine gold complex. Catalysis Science and Technology, 2016, 6, 7946-7955.	2.1	38
75	Enhancing the high voltage interface compatibility of LiNi0.5Co0.2Mn0.3O2 in the succinonitrile-based electrolyte. Electrochimica Acta, 2019, 298, 818-826.	2.6	38
76	Measurement and correlation for solubility of levofloxacin in six solvents at temperatures from 288.15 to 328.15K. Fluid Phase Equilibria, 2012, 335, 1-7.	1.4	36
77	LDA measurements and CFD simulations of an inâ€ŀine high shear mixer with ultrafine teeth. AICHE Journal, 2014, 60, 1143-1155.	1.8	36
78	Effects of nitrogen-dopants on Ru-supported catalysts for acetylene hydrochlorination. RSC Advances, 2016, 6, 18026-18032.	1.7	36
79	Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination. Chemical Engineering Science, 2015, 135, 472-478.	1.9	35
80	Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: a DFT study. Physical Chemistry Chemical Physics, 2015, 17, 7720-7730.	1.3	35
81	Selective acetylene hydrogenation over core–shell magnetic Pdâ€supported catalysts in a magnetically stabilized bed. AICHE Journal, 2008, 54, 1358-1364.	1.8	34
82	Simultaneous optimization of heat-integrated water networks by a nonlinear program. Chemical Engineering Science, 2016, 140, 76-89.	1.9	34
83	Effects of polymorphic DNA on the fluorescent properties of silver nanoclusters. Photochemical and Photobiological Sciences, 2013, 12, 1864-1872.	1.6	33
84	Simultaneous integration of water and energy on conceptual methodology for both single- and multi-contaminant problems. Chemical Engineering Science, 2014, 117, 436-444.	1.9	33
85	Improvement of imidazolium-based ionic liquids on the activity of ruthenium catalyst for acetylene hydrochlorination. Molecular Catalysis, 2017, 443, 220-227.	1.0	33
86	CFD analysis of flow pattern and power consumption for viscous fluids in in-line high shear mixers. Chemical Engineering Research and Design, 2017, 117, 190-204.	2.7	33
87	DRIFTS study of photo-assisted catalytic CO + NO redox reaction over CuO/CeO2-TiO2. Catalysis Today, 2015, 258, 139-147.	2.2	32
88	Catalytic dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride over N-doped coconut activated carbon. RSC Advances, 2015, 5, 104071-104078.	1.7	32
89	Performance of bimetallic PdRu catalysts supported on gamma alumina for 2-ethylanthraquinone hydrogenation. RSC Advances, 2017, 7, 6447-6456.	1.7	32
90	Oxidation modification of Ru-based catalyst for acetylene hydrochlorination. RSC Advances, 2017, 7, 23742-23750.	1.7	32

#	Article	IF	CITATIONS
91	High performance of supported Cu-based catalysts modulated via phosphamide coordination in acetylene hydrochlorination. Applied Catalysis A: General, 2020, 591, 117408.	2.2	32
92	Effect of supercritical water on the stability and activity of alkaline carbonate catalysts in coal gasification. Journal of Energy Chemistry, 2013, 22, 459-467.	7.1	31
93	Residence time distributions of in-line high shear mixers with ultrafine teeth. Chemical Engineering Science, 2013, 87, 111-121.	1.9	30
94	Performance of facet-controlled Pd nanocrystals in 2-ethylanthraquinone hydrogenation. Catalysis Science and Technology, 2015, 5, 2630-2639.	2.1	30
95	Enhanced catalytic performance of activated carbon-supported ru-based catalysts for acetylene hydrochlorination by azole ligands. Applied Catalysis A: General, 2020, 592, 117431.	2.2	30
96	Cu(II)-coordinated GpG-duplex DNA as peroxidase mimetics and its application for label-free detection of Cu2+ ions. Biosensors and Bioelectronics, 2014, 60, 252-258.	5.3	29
97	Effect of Stator Geometry on the Emulsification and Extraction in the Inline Single-Row Blade-Screen High Shear Mixer. Industrial & Engineering Chemistry Research, 2017, 56, 9376-9388.	1.8	29
98	Numerical and experimental investigations of micromixing performance and efficiency in a pore-array intensified tube-in-tube microchannel reactor. Chemical Engineering Journal, 2019, 370, 1350-1365.	6.6	29
99	Geometrical improvement of inline high shear mixers to intensify micromixing performance. Chemical Engineering Journal, 2017, 319, 307-320.	6.6	28
100	Mechanistic understanding of Cu-based bimetallic catalysts. Frontiers of Chemical Science and Engineering, 2020, 14, 689-748.	2.3	28
101	Visible-light-mediated organoboron-catalysed metal-free dehydrogenation of N-heterocycles using molecular oxygen. Green Chemistry, 2021, 23, 4446-4450.	4.6	28
102	Synthesis and sensing application of glutathione-capped platinum nanoparticles. Analytical Methods, 2015, 7, 4464-4471.	1.3	27
103	Influence of the support composition on the hydrogenation of methyl acetate over Cu/MgO-SiO2 catalysts. Journal of Molecular Catalysis A, 2015, 409, 79-84.	4.8	27
104	Insights into the mechanism during viscosity reduction process of heavy oil through molecule simulation. Fuel, 2022, 310, 122270.	3.4	27
105	Natural isoflavones regulate the quadruplex–duplex competition in human telomeric DNA. Nucleic Acids Research, 2009, 37, 2471-2482.	6.5	26
106	Zn–Cu bimetallic catalysts supported on pure silica MCM-41 for acetylene hydration reaction. New Journal of Chemistry, 2018, 42, 6507-6514.	1.4	26
107	Synthesis of mesoporous silica membranes oriented by self-assembles of surfactants. Journal of Membrane Science, 2003, 222, 219-224.	4.1	25
108	Nanomaterials and nanoclusters based on DNA modulation. Current Opinion in Biotechnology, 2014, 28, 33-38.	3.3	25

#	Article	IF	CITATIONS
109	Colorimetric detection of cysteine and homocysteine based on an oligonucleotide-stabilized Pd nanozyme. Analytical Methods, 2016, 8, 5111-5116.	1.3	25
110	Strontium promoted activated carbon-supported gold catalysts for non-mercury catalytic acetylene hydrochlorination. Catalysis Science and Technology, 2016, 6, 3230-3237.	2.1	25
111	Size Effect of a Ni Nanocatalyst on Supercritical Water Gasification of Lignin by Reactive Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research, 2019, 58, 23014-23024.	1.8	25
112	Pyrrolidone ligand improved Cuâ€based catalysts with high performance for acetylene hydrochlorination. Applied Organometallic Chemistry, 2021, 35, .	1.7	25
113	Boron Doping and LiBO ₂ Coating Synergistically Enhance the High-Rate Performance of LiNi _{0.6} Co _{0.1} Mn _{0.3} O ₂ Cathode Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 5322-5333.	3.2	25
114	Termination effects of single-atom decorated v-Mo2CTx MXene for the electrochemical nitrogen reduction reaction. Journal of Colloid and Interface Science, 2022, 605, 897-905.	5.0	25
115	Molecular Design of the Amphiphilic Polymer as a Viscosity Reducer for Heavy Crude Oil: From Mesoscopic to Atomic Scale. Energy & Fuels, 2021, 35, 1152-1164.	2.5	25
116	Analysis of degradation mechanism of disperse orange 25 in supercritical water oxidation using molecular dynamic simulations based on the reactive force field. Journal of Molecular Modeling, 2015, 21, 54.	0.8	24
117	Zn supported on titania-doped mesoporous silicate MCM-41 as efficient catalysts for acetylene hydration. Catalysis Science and Technology, 2019, 9, 981-991.	2.1	24
118	In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ionics, 2020, 345, 115159.	1.3	24
119	Synthesis of a vinyl chloride monomer <i>via</i> acetylene hydrochlorination with a ruthenium-based N-heterocyclic carbene complex catalyst. Catalysis Science and Technology, 2020, 10, 3552-3560.	2.1	24
120	Single-Atom Ruthenium Catalytic Sites for Acetylene Hydrochlorination. Journal of Physical Chemistry Letters, 2021, 12, 7350-7356.	2.1	24
121	Robust Pt/TiO2/Ni(OH)2 nanosheet arrays enable outstanding performance for high current density alkaline water electrolysis. Applied Catalysis B: Environmental, 2022, 316, 121654.	10.8	24
122	Nitrogen-doped carbon supports with terminated hydrogen and their effects on active gold species: a density functional study. Physical Chemistry Chemical Physics, 2014, 16, 25498-25507.	1.3	23
123	Non-mercury catalytic acetylene hydrochlorination over activated carbon-supported Au catalysts promoted by CeO ₂ . Catalysis Science and Technology, 2016, 6, 1821-1828.	2.1	23
124	Synergistic Mechanism of Ni Catalyst and Supercritical Water during Refractory Organic Wastewater Treatment. Industrial & Engineering Chemistry Research, 2019, 58, 1535-1547.	1.8	23
125	Comparative study of LaNiO3 and La2NiO4 catalysts for partial oxidation of methane. Reaction Kinetics and Catalysis Letters, 2008, 95, 89-97.	0.6	22
126	Light FCC gasoline olefin oligomerization over a magnetic NiSo ₄ /γâ€Al ₂ o ₃ catalyst in a magnetically stabilized bed. AICHE Journal, 2009, 55, 717-725.	1.8	22

#	Article	IF	CITATIONS
127	Highly Active Subnano Palladium Clusters Embedded in i-Motif DNA. Langmuir, 2013, 29, 14345-14350.	1.6	22
128	The surface triple-coupling on single crystalline cathode for lithium ion batteries. Nano Energy, 2021, 86, 106096.	8.2	22
129	Effect of TiO2 support on the structural and electronic properties of PdmAgn clusters: a first-principles study. Physical Chemistry Chemical Physics, 2012, 14, 8683.	1.3	21
130	Gas–Liquid Mass Transfer Characteristics in Two Inline High Shear Mixers. Industrial & Engineering Chemistry Research, 2014, 53, 4894-4901.	1.8	21
131	Effect of Ru/Cl ratio on the reaction of acetylene hydrochlorination. New Journal of Chemistry, 2017, 41, 14675-14682.	1.4	21
132	Chemoselective <i>N</i> -arylation of aminobenzamides <i>via</i> copper catalysed Chan–Evans–Lam reactions. Organic and Biomolecular Chemistry, 2017, 15, 9288-9292.	1.5	21
133	Enhanced catalytic performance of Zr-modified ZSM-5-supported Zn for the hydration of acetylene to acetaldehyde. Catalysis Communications, 2019, 120, 33-37.	1.6	21
134	Visible-Light-Mediated Aminoquinolate Diarylboron-Catalyzed Metal-Free Hydroxylation of Organoboronic Acids under Air and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 13894-13899.	3.2	21
135	Evaluation and DFT analysis of 3D porous rhombohedral Fe-modified MgO for removing fluoride efficiently. Applied Surface Science, 2021, 552, 149423.	3.1	21
136	Catalytic Performance of Ag Nanoparticles Templated by Polymorphic DNA. Catalysis Letters, 2010, 139, 145-150.	1.4	20
137	Catalytic Pyrolysis of Bituminous Coal under Pyrolysis Gas over a Ni/MgO Catalyst. Chemical Engineering and Technology, 2017, 40, 1605-1610.	0.9	20
138	Determination and correlation of solubility of linezolid form II in different pure and binary solvents. Fluid Phase Equilibria, 2017, 432, 18-27.	1.4	20
139	Synergistically Catalytic Hydrochlorination of Acetylene over the Highly Dispersed Ru Active Species Embedded in P-Containing Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2020, 8, 10173-10184.	3.2	20
140	Enhanced catalytic activity and stability over P-modified alumina supported Pd for anthraquinone hydrogenation. Applied Catalysis A: General, 2020, 593, 117422.	2.2	20
141	Effects of Self-Assembled Monolayers on Selective Crystallization of Tolbutamide. Crystal Growth and Design, 2011, 11, 5498-5506.	1.4	19
142	Liquid–liquid mass transfer property of two inline high shear mixers. Chemical Engineering and Processing: Process Intensification, 2016, 101, 16-24.	1.8	19
143	Mixing Performance of an Inline High-Shear Mixer with a Novel Pore-Array Liquid Distributor. Industrial & Engineering Chemistry Research, 2019, 58, 20213-20225.	1.8	19
144	MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination. Molecular Catalysis, 2019, 479, 110612.	1.0	19

#	Article	IF	CITATIONS
145	In Situ Induced Surface Reconstruction of Single-Crystal Lithium-Ion Cathode Toward Effective Interface Compatibility. ACS Applied Materials & Interfaces, 2021, 13, 13771-13780.	4.0	19
146	Artificial neural network model to predict cold filter plugging point of blended diesel fuels. Fuel Processing Technology, 2006, 87, 585-590.	3.7	18
147	Single-Pass Emulsification Processes in Two Different Inline High Shear Mixers. Industrial & Engineering Chemistry Research, 2013, 52, 14463-14471.	1.8	18
148	Hydrochlorination of Acetylene Catalyzed by an Activated Carbon-Supported Ammonium Hexachlororuthenate Complex. Catalysts, 2017, 7, 17.	1.6	18
149	Hydrochlorination of Acetylene Over the Activatedâ€Carbonâ€6upported Au Catalysts Modified by Nâ^'Pâ^'Oâ€Containing Ligand. ChemCatChem, 2019, 11, 3441-3450.	1.8	18
150	Investigation of gas-liquid mass transfer and power consumption characteristics in jet-flow high shear mixers. Chemical Engineering Journal, 2021, 411, 128580.	6.6	18
151	Interphase Mass Transfer in G-L-S Magnetically Stabilized Bed with Amorphous Alloy SRNA-4 Catalyst. Chinese Journal of Chemical Engineering, 2006, 14, 734-739.	1.7	17
152	Graphene-induced hierarchical mesoporous MgO for the Claisen–Schmidt condensation reaction. New Journal of Chemistry, 2019, 43, 4698-4705.	1.4	17
153	Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear mixers. Frontiers of Chemical Science and Engineering, 2021, 15, 384-398.	2.3	17
154	Gold–glutathione complex catalysts with carbon support for non-mercury catalytic acetylene hydrochlorination. RSC Advances, 2016, 6, 105110-105118.	1.7	16
155	Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer. Materials, 2017, 10, 1030.	1.3	16
156	Activated Carbon-Supported Tetrapropylammonium Perruthenate Catalysts for Acetylene Hydrochlorination. Catalysts, 2017, 7, 311.	1.6	16
157	Hydrochlorination of acetylene catalyzed by activated carbon supported highly dispersed gold nanoparticles. Applied Catalysis A: General, 2018, 566, 15-24.	2.2	16
158	Partial oxidation of methane to syngas over BaTi1â^'xNixO3 catalysts. Catalysis Today, 2004, 98, 583-587.	2.2	15
159	Simultaneous Heat Exchanger Network Synthesis Involving Nonisothermal Mixing Streams with Temperature-Dependent Heat Capacity. Industrial & Engineering Chemistry Research, 2015, 54, 8979-8987.	1.8	15
160	Supercritical water gasification of fuel gas production from waste lignin: The effect mechanism of different oxidized iron-based catalysts. International Journal of Hydrogen Energy, 2021, 46, 30288-30299.	3.8	15
161	Effects of Coordination Ability of Nitrogen-Containing Carboxylic Acid Ligands on Nieuwland Catalyst. Catalysts, 2018, 8, 337.	1.6	14
162	Numerical investigation on the efficient mixing of overbridged split-and-recombine micromixer at low Reynolds number. Microsystem Technologies, 2019, 25, 3447-3461.	1.2	14

#	Article	IF	CITATIONS
163	Novel nonmetal catalyst of supported tetraphenylphosphonium bromide for acetylene hydrochlorination. Catalysis Science and Technology, 2019, 9, 188-198.	2.1	14
164	Rapid and efficient synthesis of highly crystalline SSZ-13 zeolite by applying high shear mixing in the aging process. Microporous and Mesoporous Materials, 2020, 293, 109812.	2.2	14
165	Characterization of liquid–liquid mass transfer performance in a novel poreâ€array intensified tubeâ€inâ€tube microchannel. AICHE Journal, 2020, 66, e16893.	1.8	14
166	<i>tert</i> Butyl Bromide-Promoted Intramolecular Cyclization of 2-Arylamino Phenyl Ketones and Its Combination with Cu-Catalyzed C–N Coupling: Synthesis of Acridines at Room Temperature. Journal of Organic Chemistry, 2020, 85, 10167-10174.	1.7	14
167	Effects of N-, P-, or O-containing ligands on gold-based complex catalysts for acetylene hydrochlorination. Applied Catalysis A: General, 2021, 612, 118015.	2.2	14
168	G-/C-rich Oligonucleotides Stabilized Pd Nanocatalysts for the Suzuki Coupling Reaction Under Mild Conditions. Catalysis Letters, 2013, 143, 578-586.	1.4	13
169	Gas–solid acetylene dimerization over copper-based catalysts. New Journal of Chemistry, 2019, 43, 13608-13615.	1.4	13
170	The evolution of Fe and Fe-Ca catalysts during char catalytic hydrogasification. Fuel, 2019, 257, 116040.	3.4	13
171	In-situ polymerization of hydroquinone-formaldehyde resin to construct 3D porous composite LiFePO4/carbon for remarkable performance of lithium-ion batteries. Journal of Alloys and Compounds, 2020, 818, 152858.	2.8	13
172	Solvent-assisted synthesis of N-doped activated carbon-based catalysts for acetylene hydrochlorination. Applied Catalysis A: General, 2021, 611, 117902.	2.2	13
173	Liquid–Liquid Dispersion and Selectivity of Chemical Reactions in the Inline Teethed High Shear Mixers. Industrial & Engineering Chemistry Research, 2021, 60, 4498-4509.	1.8	13
174	Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Applied Catalysis A: General, 2022, 630, 118461.	2.2	13
175	Effects of CTAB on porous silica templated by chitosan. Journal of Materials Science, 2010, 45, 4470-4479.	1.7	12
176	Solubility of caprolactam in different organic solvents. Fluid Phase Equilibria, 2012, 319, 9-15.	1.4	12
177	Enantioselective Recognition Mechanism of Ofloxacin via Cu(II)-Modulated DNA. Journal of Physical Chemistry B, 2014, 118, 5300-5309.	1.2	12
178	Tailoring the degradation and mechanical properties of poly(Îμ-caprolactone) incorporating functional Îμ-caprolactone-based copolymers. Polymer Chemistry, 2019, 10, 3786-3796.	1.9	12
179	altimg="si1.gif" overflow="scroll"> <mml:msubsup><mml:mrow><mml:mtext>N</mml:mtext></mml:mrow><mml:mrow><mml xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msubsup><mml:mrow><mml:mtext>PE</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mtext>PE</mml:mtext></mml:mrow><mml:mrow><mml:mtext>PE</mml:mtext><!--</td--><td>:mn>4444 2.2</td><td></td></mml:mrow></mml:mrow></mml:msubsup></mml </mml:mrow></mml:msubsup>	:mn>4444 2.2	
180	Catalysis Today, 2020, 355, 205-213. Hollow Carbon Nanospheres Decorated with Abundant Pyridinic N ⁺ O [–] for Efficient Acetylene Hydrochlorination. ACS Sustainable Chemistry and Engineering, 2022, 10, 194-203.	3.2	12

#	Article	IF	CITATIONS
181	Axial Liquid Dispersion Characteristics in Magnetically Stabilized Bed. Chinese Journal of Chemical Engineering, 2006, 14, 532-536.	1.7	11
182	Interactions between Building Integrated Photovoltaics and Microclimate in Urban Environments. Journal of Solar Energy Engineering, Transactions of the ASME, 2006, 128, 168-172.	1.1	11
183	Critical micelle concentrations of cetyltrimethylammonium chloride and their influence on the periodic structure of mesoporous silica. Colloid Journal, 2008, 70, 747-752.	0.5	11
184	Enantioseparation of chiral ofloxacin using biomacromolecules. Korean Journal of Chemical Engineering, 2013, 30, 1448-1453.	1.2	11
185	Enhanced low-temperature CO/CO2 methanation performance of Ni/Al2O3 microspheres prepared by the spray drying method combined with high shear mixer-assisted coprecipitation. Fuel, 2021, 291, 120127.	3.4	11
186	Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition. Frontiers of Chemical Science and Engineering, 2022, 16, 886-896.	2.3	11
187	Hybrid-metal hydroxyl fluoride nanosheet arrays as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2022, 10, 11774-11783.	5.2	11
188	Highly selective electrocatalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran over AgCu nanoalloys. International Journal of Hydrogen Energy, 2022, 47, 28904-28914.	3.8	11
189	Orderly Microaggregates of G-/C-Rich Oligonucleotides Associated with Spermine. Biomacromolecules, 2011, 12, 747-756.	2.6	10
190	Mechanistic insight into the selective crystallization of the metastable polymorph of tolbutamide in ethanol–water solution. RSC Advances, 2014, 4, 21599-21607.	1.7	10
191	Highly effective carbon-supported gold-ionic liquid catalyst for acetylene hydrochlorination. RSC Advances, 2019, 9, 21931-21938.	1.7	10
192	Hierarchical Cross-Linked Poly(caprolactone- <i>co</i> -urethane) toward Connective Tissue-like Properties and Multifunctional Integration. Chemistry of Materials, 2019, 31, 9295-9306.	3.2	10
193	Cu(II)Cu(I)/AC Catalysts for Gas–Solid Acetylene Dimerization. Industrial & Engineering Chemistry Research, 2020, 59, 110-117.	1.8	10
194	L–S mass transfer in G–L–S countercurrent magnetically stabilized bed with amorphous alloy SRNA-4 catalyst. Particuology: Science and Technology of Particles, 2007, 5, 116-120.	0.4	9
195	Local heat transfer properties in co- and counter-current G–L–S magnetically stabilized fluidized beds. Particuology, 2011, 9, 44-50.	2.0	9
196	Measurement and correlation for solubility of dexibuprofen in different solvents from 263.15 to 293.15K. Thermochimica Acta, 2012, 540, 91-97.	1.2	9
197	High gradient magnetic separation of catalyst/wax mixture in Fischer–Tropsch synthesis: Modeling and experimental study. Chemical Engineering Science, 2013, 99, 28-37.	1.9	9
198	Polyamide thin film composite membrane using mixed amines of thiourea and m-phenylenediamine. RSC Advances, 2015, 5, 54125-54132.	1.7	9

#	Article	IF	CITATIONS
199	Bio-inspired enantioseparation for chiral compounds. Chinese Journal of Chemical Engineering, 2016, 24, 31-38.	1.7	9
200	Non-stoichiometric carbon-coated LiFe _x PO ₄ as cathode materials for high-performance Li-ion batteries. RSC Advances, 2017, 7, 33544-33551.	1.7	9
201	Interfacial functional terminals enhance the heterogeneous nucleation of lysozyme crystals. CrystEngComm, 2018, 20, 2499-2510.	1.3	9
202	Dehydrochlorination of 1,2-dichloroethane over a tetraphenylphosphonium chloride-supported carbon catalyst. New Journal of Chemistry, 2018, 42, 18729-18738.	1.4	9
203	Micromixing performance of the teethed high shear mixer under semi-batch operation. Frontiers of Chemical Science and Engineering, 2022, 16, 546-559.	2.3	9
204	Electrocatalytic oxidation of toluene into benzaldehyde based on molecular oxygen activation over oxygen vacancy of heteropoly acid. Applied Surface Science, 2022, 599, 153916.	3.1	9
205	Solubility of Dexibuprofen in Different Solvents from (263.15 to 293.15) K. Journal of Chemical & Engineering Data, 2011, 56, 671-673.	1.0	8
206	Synthesis of Vinyl Chloride Monomer over Carbon-Supported Tris-(Triphenylphosphine) Ruthenium Dichloride Catalysts. Catalysts, 2018, 8, 276.	1.6	8
207	Characteristics of activated carbons modulate the catalytic performance for acetylene hydrochlorination. Molecular Catalysis, 2020, 483, 110707.	1.0	8
208	Sulphur-doped activated carbon as a metal-free catalyst for acetylene hydrochlorination. RSC Advances, 2020, 10, 34612-34620.	1.7	8
209	Solubility and thermodynamic properties of flonicamid in pure and binary solvents in the temperature range of 283.15–323.15ÂK. Journal of Molecular Liquids, 2021, 337, 116233.	2.3	8
210	Rapid and economical conversion of Beta zeolite to SSZ-13 zeolite. Microporous and Mesoporous Materials, 2021, 328, 111469.	2.2	8
211	Effect of Sludge Conditioning Temperature on the Thickening and Dewatering Performance of Polymers. Journal of Residuals Science and Technology, 2016, 13, 215-224.	0.6	8
212	Growth of SnO2 thin films on self-assembled layers of the short-chain alkoxysilane. Applied Surface Science, 2005, 245, 94-101.	3.1	7
213	Effects of surfactant/water ratio and dye amount on the fluorescent silica nanoparticles. Colloid Journal, 2010, 72, 723-729.	0.5	7
214	Chiral Discrimination of Ofloxacin Enantiomers Using DNA Double Helix Regulated by Metal Ions. Chirality, 2014, 26, 249-254.	1.3	7
215	Design of distributed wastewater treatment networks of multiple contaminants with maximum inlet concentration constraints. Journal of Cleaner Production, 2016, 118, 170-178.	4.6	7
216	Histidine-assisted synthesis of CeO ₂ nanoparticles for improving the catalytic performance of Pt-based catalysts in methanol electrooxidation. New Journal of Chemistry, 2018, 42, 18159-18165.	1.4	7

#	Article	IF	CITATIONS
217	Synthesis of aromatic-doped polycaprolactone with tunable degradation behavior. Polymer Chemistry, 2018, 9, 3931-3943.	1.9	7
218	Charged polymeric additives affect the nucleation of lysozyme crystals. CrystEngComm, 2019, 21, 1992-2001.	1.3	7
219	Molecular design of ionic liquids as novel non-metal catalysts for the acetylene hydrochlorination reaction. Physical Chemistry Chemical Physics, 2019, 21, 7635-7644.	1.3	7
220	A novel risedronic acid-modified Nieuwland catalyst for acetylene dimerization. Catalysis Communications, 2020, 136, 105922.	1.6	7
221	Nitrogen-Modified Activated Carbon Supported Cu(II)Cu(I)/NAC Catalysts for Gas–Solid Acetylene Dimerization. Catalysis Letters, 2021, 151, 2990-2995.	1.4	7
222	Reversible Removal of SO ₂ with Amine-Functionalized ZIF8 Dispersed in <i>n</i> -Heptanol. Energy & Fuels, 2021, 35, 5110-5121.	2.5	7
223	Solvent–Antisolvent Competitive Interactions Mediate Imidacloprid Polymorphs in Antisolvent Crystallization. Crystal Growth and Design, 2021, 21, 4318-4328.	1.4	7
224	Experimental and DFT study of F ^{â^'} removed by Cl ^{â^'} -hydrotalcite. New Journal of Chemistry, 2022, 46, 12290-12299.	1.4	7
225	Study of Cu–Ni–Ca Composite Catalysts in Catalytic Hydrogasification of Char. Energy & Fuels, 2019, 33, 9661-9670.	2.5	6
226	Molecular interaction transfer among solvents and solutes modulates the formation of linezolid crystals. CrystEngComm, 2019, 21, 3209-3217.	1.3	6
227	Hydrochlorination of acetylene over the Ru-based catalysts treated by plasma under different atmospheres. Plasma Science and Technology, 2019, 21, 085501.	0.7	6
228	Copper atalyzed synthesis of <i>N</i> â€aryl acridones from 2â€amino benzophenones and aryl boronic acids via sequential double oxidative C–N coupling. Applied Organometallic Chemistry, 2020, 34, e5316.	1.7	6
229	Comparison and estimation on deagglomeration performance of batch high shear mixers for nanoparticle suspensions. Chemical Engineering Journal, 2022, 429, 132420.	6.6	6
230	The effect of chlorine vacancy in CuCl2 (0Â0Â1) catalyst on the mechanism of SiCl4 dissociation into SiHCl3: A DFT study. Applied Surface Science, 2020, 515, 146100.	3.1	6
231	Crystal facet dependence of SiHCl3 reduction to Si mechanism on silicon rod. Applied Surface Science, 2022, 580, 152366.	3.1	6
232	High-efficiency catalysis of Ru-based catalysts assisted by triazine-based ligands containing different heteroatoms (N, O, S) for acetylene hydrochlorination. Molecular Catalysis, 2022, 519, 112142.	1.0	6
233	Ru supported on activated carbon and coated with a polydopamine layer for effective acetylene hydrochlorination. Catalysis Science and Technology, 2022, 12, 4255-4265.	2.1	6
234	Packing structure of MPS SAMs and its influence on oriented deposition of SnO ₂ crystal films. AICHE Journal, 2007, 53, 2957-2967.	1.8	5

#	Article	IF	CITATIONS
235	Hydrazinylbenzenesulfonic Acid-Modified Nieuwland Catalyst for Acetylene Dimerization Reaction. Catalysis Letters, 2020, 150, 1766-1773.	1.4	5
236	Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation. Energy, 2022, 240, 122474.	4.5	5
237	Effect of Mg 2+ additives on Nieuwland catalyst: The role of the second metal ionic radius. Journal of the Chinese Chemical Society, 0, , .	0.8	5
238	Titanium and fluorine co-modification strengthens high-voltage electrochemical performance of LiCoO2. Journal of Alloys and Compounds, 2022, 909, 164787.	2.8	5
239	Interactions Between Building Integrated Photovoltaics and Microclimate in Urban Environments. , 2005, , 499.		4
240	Branched silica nanostructures oriented by dynamic G-quadruplex transformation. Materials Research Bulletin, 2010, 45, 1954-1959.	2.7	4
241	Pump Capacity and Power Consumption of Two Commercial In-line High Shear Mixers. Industrial & Engineering Chemistry Research, 2012, , 121224065209003.	1.8	4
242	Enantioselective separation of chiral ofloxacin using functional Cu(<scp>ii</scp>)-coordinated G-rich oligonucleotides. RSC Advances, 2014, 4, 1329-1333.	1.7	4
243	Inflection point method (IPM): A new method for single-contaminant industrial water networks design. Chemical Engineering Science, 2015, 126, 529-542.	1.9	4
244	Preparation and Electrochemical Properties of Mesoporous NiFe2O4/N-Doped Carbon Nanocomposite as an Anode for Lithium Ion Battery. Frontiers in Materials, 2020, 7, .	1.2	4
245	Synthesis of nano-octahedral MgO <i>via</i> a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions. RSC Advances, 2020, 10, 10681-10688.	1.7	4
246	Investigation and estimation on deagglomeration of nanoparticle clusters in teethed in-line high shear mixers. Chemical Engineering Journal, 2021, 426, 130795.	6.6	4
247	Dimerization of Acetylene to Monovinylacetylene (MVA) by Bimetallic Zr/Cu Catalyst in Nieuwland Catalytic System. Molecules, 2022, 27, 602.	1.7	4
248	Catalytic acetylene hydration over the Zn/Zr-MCM catalyst: Effect of preparation methods for doping zirconia on catalytic performance. Applied Catalysis A: General, 2022, 633, 118476.	2.2	4
249	Lanthanum Oxyfluoride modifications boost the electrochemical performance of Nickel-rich cathode. Applied Surface Science, 2022, 599, 153928.	3.1	4
250	Isobaric Vapor–Liquid Equilibria of Binary Systems (Propyl Acetate + <i>n</i> -Pentanol), (Propyl) Tj ETQq0 0 0 i Chemical & Engineering Data, 2013, 58, 3254-3258.	gBT /Over 1.0	lock 10 Tf 50 3
251	Adsorption of Acetylene on CuCl(111) Surfaces Using Density Functional Theory. Asian Journal of Chemistry, 2013, 25, 8859-8862.	0.1	3
252	Measurement and correlation of solubility of trimethylolethane in different pure solvents and binary	1.7	3

mixtures. Chinese Journal of Chemical Engineering, 2017, 25, 1473-1480. 252

#	Article	IF	CITATIONS
253	Effects of Small Biomolecules on Lysozyme Crystallization. Transactions of Tianjin University, 2021, 27, 359-365.	3.3	3
254	Investigating the Cu-based catalysts for char catalytic hydrogasification and its recovery. Fuel, 2021, 294, 120567.	3.4	3
255	Theoretical design of ruthenium single-atom catalysts with different substrates for acetylene hydrochlorination. Molecular Catalysis, 2021, 513, 111826.	1.0	3
256	A numerical study of mixing intensification for highly viscous fluids in multistage rotor–stator mixers. Chinese Journal of Chemical Engineering, 2022, 47, 218-230.	1.7	3
257	Intensifying strategy of ionic liquids for Pd-based catalysts in anthraquinone hydrogenation. Catalysis Science and Technology, 2022, 12, 1766-1776.	2.1	3
258	Construction of highly dispersed Au active sites by ice photochemical polishing for efficient acetylene hydrochlorination. New Journal of Chemistry, 2022, 46, 3738-3746.	1.4	3
259	Novel Rotor-Stator Assembly Promotes the Emulsification Performance in an Inline High-Shear Mixer. Industrial & Engineering Chemistry Research, 2022, 61, 4722-4737.	1.8	3
260	Highly dispersed and stabilized Pd species on H2 pre-treated Al2O3 for anthraquinone hydrogenation and H2O2 production. Molecular Catalysis, 2022, 524, 112264.	1.0	3
261	Natural isoflavones regulate the quadruplex-duplex competition in human telomeric DNA. Nucleic Acids Research, 2011, 39, 9833-9833.	6.5	2
262	Cu-Si bond and Cl defect synergistical catalysis for SiCl4 dissociation on CuCl2(1 0 0): A DFT study. Applied Surface Science, 2021, 543, 148777.	3.1	2
263	Density functional theory simulation of the deoxygenation of lignite model compounds in the aqueous phase under a CO atmosphere catalyzed by OH ^{â^'} ions. New Journal of Chemistry, 2022, 46, 7187-7194.	1.4	2
264	Construction of multistage porous carbon materials for the hydrochlorination of acetylene: Impact of nitrogen incorporation. Molecular Catalysis, 2022, 527, 112405.	1.0	2
265	<scp>Caâ€Fe</scp> mixed metal oxide adsorbent prepared via a novel coprecipitator for efficient fluoride adsorption. Journal of the Chinese Chemical Society, 2022, 69, 1669-1679.	0.8	2
266	Intrinsic Enantioselectivity of Natural Polynucleotides Modulated by Copper Ions. Chirality, 2015, 27, 306-313.	1.3	1
267	Highly Dispersed Pd Nanoparticles Supported on Zr-Doped MgAl Mixed Metal Oxides for 2-Ethylanthraquinone Hydrogenation. Transactions of Tianjin University, 2019, 25, 576-585.	3.3	1
268	Gas Absorption and Mass Transfer in a Pore-Array Intensified Tube-in-Tube Microchannel. Transactions of Tianjin University, 2021, 27, 409-421.	3.3	1
269	System Modeling of Greenhouse Type Solar Water Heater. , 2005, , .		1
270	Distinct binding modes of pesticides affect the phase transition of lysozyme. CrystEngComm, 0, , .	1.3	0