
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3853679/publications.pdf Version: 2024-02-01

Υλνιμαι Υιν

#	Article	IF	CITATIONS
1	BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell, 2002, 109, 181-191.	13.5	1,124
2	A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in Arabidopsis. Cell, 2005, 120, 249-259.	13.5	709
3	Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice Â. Plant Cell, 2014, 26, 4376-4393.	3.1	589
4	A brassinosteroid transcriptional network revealed by genomeâ€wide identification of BESI target genes in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 65, 634-646.	2.8	565
5	Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell, 2020, 32, 295-318.	3.1	548
6	BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development (Cambridge), 2004, 131, 5341-5351.	1.2	495
7	Heterodimerization and Endocytosis of Arabidopsis Brassinosteroid Receptors BRI1 and AtSERK3 (BAK1). Plant Cell, 2004, 16, 3216-3229.	3.1	444
8	AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. Frontiers in Plant Science, 2019, 10, 228.	1.7	438
9	Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes and Development, 2004, 18, 448-460.	2.7	341
10	Three related receptor-like kinases are required for optimal cell elongation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7648-7653.	3.3	315
11	DWARF AND LOWâ€TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant Journal, 2009, 58, 803-816.	2.8	307
12	Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7618-7623.	3.3	296
13	DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. Plant Cell, 2012, 24, 2562-2577.	3.1	292
14	Arabidopsis WRKY46, WRKY54 and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Response. Plant Cell, 2017, 29, tpc.00364.2017.	3.1	286
15	Brassinosteroids control male fertility by regulating the expression of key genes involved in <i>Arabidopsis</i> anther and pollen development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6100-6105.	3.3	269
16	Selective Autophagy of BES1 Mediated by DSK2 Balances Plant Growth and Survival. Developmental Cell, 2017, 41, 33-46.e7.	3.1	262
17	Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroidâ€induced gene expression. Plant Journal, 2009, 58, 275-286.	2.8	228
18	RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8, 14573.	5.8	202

#	Article	IF	CITATIONS
19	From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science, 2009, 14, 454-461.	4.3	195
20	Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochemical Journal, 2017, 474, 2641-2661.	1.7	183
21	UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis. Developmental Cell, 2018, 44, 512-523.e5.	3.1	180
22	Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant Journal, 2009, 59, 930-939.	2.8	174
23	FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Current Biology, 2018, 28, 3316-3324.e6.	1.8	154
24	The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis. Plant Cell, 2019, 31, 1788-1806.	3.1	153
25	Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology, 2013, 16, 545-553.	3.5	147
26	<i>Arabidopsis</i> IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3918-3923.	3.3	132
27	A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10191-10196.	3.3	120
28	SINAT E3 Ligases Control the Light-Mediated Stability of the Brassinosteroid-Activated Transcription Factor BES1 in Arabidopsis. Developmental Cell, 2017, 41, 47-58.e4.	3.1	118
29	Recent Advances in the Regulation of Brassinosteroid Signaling and Biosynthesis Pathways ^F . Journal of Integrative Plant Biology, 2011, 53, 455-468.	4.1	112
30	MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20142-20147.	3.3	109
31	<i>QQS</i> orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14734-14739.	3.3	109
32	Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Science, 2015, 234, 163-173.	1.7	105
33	RNA Interference Knockdown of BRASSINOSTEROID INSENSITIVE1 in Maize Reveals Novel Functions for Brassinosteroid Signaling in Controlling Plant Architecture. Plant Physiology, 2015, 169, 826-839.	2.3	93
34	Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genetics, 2018, 14, e1007336.	1.5	92
35	Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant Journal, 1997, 12, 1179-1188.	2.8	87
36	<scp>GSK</scp> 3â€like kinase <scp>BIN</scp> 2 phosphorylates <scp>RD</scp> 26 to potentiate drought signaling in <i>Arabidopsis</i> . Plant Journal, 2019, 100, 923-937.	2.8	87

#	Article	IF	CITATIONS
37	Transcription factor <scp>HAT</scp> 1 is phosphorylated by <scp>BIN</scp> 2 kinase and mediates brassinosteroid repressed gene expression in <scp>A</scp> rabidopsis. Plant Journal, 2014, 77, 59-70.	2.8	81
38	Identification of transcription factors that regulate <i>ATG8</i> expression and autophagy in <i>Arabidopsis</i> . Autophagy, 2020, 16, 123-139.	4.3	81
39	Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Reports, 2013, 32, 1017-1030.	2.8	80
40	Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants. Plant Cell, 2020, 32, 3224-3239.	3.1	79
41	A family of receptor-like kinases are regulated by BES1 and involved in plant growth in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2009, 4, 784-786.	1.2	69
42	Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Scientific Reports, 2016, 6, 20579.	1.6	67
43	Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in <scp><i>A</i></scp> <i>rabidopsis</i> . Plant, Cell and Environment, 2016, 39, 12-25.	2.8	66
44	The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L.). Plant Journal, 1995, 7, 969-980.	2.8	64
45	Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana. Molecular Plant, 2014, 7, 1303-1315.	3.9	64
46	A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and Light Signaling to Repress Chloroplast Development in the Dark. Developmental Cell, 2021, 56, 310-324.e7.	3.1	61
47	Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nature Communications, 2021, 12, 5858.	5.8	54
48	Plant receptor kinases: Systemin receptor identified. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9090-9092.	3.3	52
49	Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis. PLoS Genetics, 2020, 16, e1008883.	1.5	48
50	WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signaling and Behavior, 2017, 12, e1365212.	1.2	36
51	SIBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. IScience, 2021, 24, 102926.	1.9	34
52	Gibberellins Promote Brassinosteroids Action and Both Increase Heterosis for Plant Height in Maize (Zea mays L.). Frontiers in Plant Science, 2017, 8, 1039.	1.7	32
53	Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theoretical and Applied Genetics, 2014, 127, 2645-2662.	1.8	31
54	The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. Plant Cell, 2021, 33, 3532-3554.	3.1	27

#	Article	IF	CITATIONS
55	Updates on BES1/BZR1 Regulatory Networks Coordinating Plant Growth and Stress Responses. Frontiers in Plant Science, 2020, 11, 617162.	1.7	26
56	Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). Plant Science, 2017, 263, 132-141.	1.7	25
57	Sumoylation of BRI1-EMS-SUPPRESSOR 1 (BES1) by the SUMO E3 Ligase SIZ1 Negatively Regulates Brassinosteroids Signaling in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 2282-2292.	1.5	24
58	A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Molecular Plant, 2022, 15, 293-307.	3.9	22
59	Transcription factors involved in brassinosteroid repressed gene expression and their regulation by BIN2 kinase. Plant Signaling and Behavior, 2014, 9, e27849.	1.2	20
60	Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 2594-2614.	3.1	18
61	Fertile plants regenerated from suspension culture-derived protoplasts of an indica type rice (Oryza) Tj ETQq1 1 ().784314 1.2	rgBT /Overiod
62	Assessing plant performance in the Enviratron. Plant Methods, 2019, 15, 117.	1.9	13
63	<scp>FERONIA</scp> mutation induces high levels of chloroplastâ€localized Arabidopsides which are involved in root growth. Plant Journal, 2019, 97, 341-351.	2.8	13
64	BdVRN1 Expression Confers Flowering Competency and Is Negatively Correlated with Freezing Tolerance in Brachypodium distachyon. Frontiers in Plant Science, 2017, 8, 1107.	1.7	12
65	Identification of Brassinosteroid Target Genes by Chromatin Immunoprecipitation Followed by High-Throughput Sequencing (ChIP-seq) and RNA-Sequencing. Methods in Molecular Biology, 2017, 1564, 63-79.	0.4	10
66	Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Letters, 2022, 596, 2198-2214.	1.3	9
67	Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses. Plant Journal, 2021, 107, 1837-1853.	2.8	4
68	Measuring Protein Half-life in Arabidopsis thaliana. Bio-protocol, 2019, 9, e3318.	0.2	1
69	Signals Brassinosteroids. , 2021, , 38-47.		0
70	A novel method of generating RNAi libraries for highâ€ŧhroughput gene function analysis of creeping bentgrass. Itsrj, 2022, 14, 622-631.	0.1	0