
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3853201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors affecting oil uptake in tortilla chips in deep-fat frying. Journal of Food Engineering, 1997, 31, 485-498.	2.7	301
2	Vacuum frying of potato chips. Journal of Food Engineering, 2002, 55, 181-191.	2.7	299
3	Poly (DLâ€lactideâ€coâ€glycolide) (PLGA) Nanoparticles with Entrappedâ€, <i>trans</i> â€Cinnamaldehyde and Eugenol for Antimicrobial Delivery Applications. Journal of Food Science, 2011, 76, N16-24.	1.5	192
4	Vacuum frying of high-quality fruit and vegetable-based snacks. LWT - Food Science and Technology, 2008, 41, 1758-1767.	2.5	169
5	Total frying-use time effects on soybean-oil deterioration and on tortilla chip quality. International Journal of Food Science and Technology, 1996, 31, 287-294.	1.3	106
6	Impingement drying of foods using hot air and superheated steam. Journal of Food Engineering, 2001, 49, 291-295.	2.7	101
7	Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4°C. LWT - Food Science and Technology, 2014, 56, 341-350.	2.5	96
8	A new approach to describe oil absorption in fried foods: a simulation study. Journal of Food Engineering, 1998, 35, 1-22.	2.7	93
9	Modeling the transport phenomena and structural changes during deep fat frying. Journal of Food Engineering, 2002, 53, 1-10.	2.7	91
10	KINETICS OF ACRYLAMIDE FORMATION DURING TRADITIONAL AND VACUUM FRYING OF POTATO CHIPS. Journal of Food Process Engineering, 2005, 28, 478-493.	1.5	81
11	Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering, 2011, 104, 272-283.	2.7	81
12	Characterization of product quality attributes of tortilla chips during the frying process. Journal of Food Engineering, 2001, 47, 97-107.	2.7	71
13	The effect of a de-oiling mechanism on the production of high quality vacuum fried potato chips. Journal of Food Engineering, 2009, 92, 297-304.	2.7	71
14	Modeling the transport phenomena and structural changes during deep fat frying. Journal of Food Engineering, 2002, 53, 11-25.	2.7	67
15	Quality of packaged romaine lettuce hearts exposed to low-dose electron beam irradiation. LWT - Food Science and Technology, 2004, 37, 705-715.	2.5	62
16	Effect of Osmotic Dehydration and Vacuumâ€Frying Parameters to Produce Highâ€Quality Mango Chips. Journal of Food Science, 2009, 74, E355-62.	1.5	62
17	SIMULTANEOUS HEAT and MASS TRANSFER DURING the DEEP FAT FRYING of TORTILLA CHIPS. Journal of Food Process Engineering, 1995, 18, 307-320.	1.5	61
18	Vacuum frying versus conventional frying – An overview*. European Journal of Lipid Science and Technology, 2014, 116, 723-734.	1.0	60

#	Article	IF	CITATIONS
19	Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L.) at medium dose levels (1.0–3.2kGy). LWT - Food Science and Technology, 2007, 40, 1123-1132.	2.5	59
20	IMPINGEMENT DRYING OF POTATO CHIPS. Journal of Food Process Engineering, 2002, 25, 63-90.	1.5	53
21	Microencapsulated Antimicrobial Compounds as a Means to Enhance Electron Beam Irradiation Treatment for Inactivation of Pathogens on Fresh Spinach Leaves. Journal of Food Science, 2011, 76, E479-88.	1.5	53
22	Understanding E. coli internalization in lettuce leaves for optimization of irradiation treatment. International Journal of Food Microbiology, 2009, 135, 238-247.	2.1	52
23	Effects of Electron Beam Irradiation on Physical, Textural, and Microstructural Properties of "Tommy Atkins―Mangoes (Mangifera indica L.). Journal of Food Science, 2006, 71, E80.	1.5	49
24	Application of High Hydrostatic Pressure to Eliminate Listeria monocytogenes from Fresh Pork Sausage. Journal of Food Protection, 1999, 62, 480-483.	0.8	47
25	Growth of Listeria monocytogenes and Listeria innocua on fresh baby spinach leaves: Effect of storage temperature and natural microflora. Postharvest Biology and Technology, 2015, 100, 41-51.	2.9	43
26	Preparation of Chitosanâ€Alginate Nanoparticles for <i>Trans</i> innamaldehyde Entrapment. Journal of Food Science, 2015, 80, N2305-15.	1.5	42
27	3-D dose distributions for optimum radiation treatment planning of complex foods. Journal of Food Engineering, 2007, 79, 312-321.	2.7	41
28	Surrogates for validation of electron beam irradiation of foods. International Journal of Food Microbiology, 2006, 110, 117-122.	2.1	38
29	Mathematical modeling of impingement drying of corn tortillas. Journal of Food Engineering, 2001, 50, 121-128.	2.7	37
30	Spatial distribution of oil after deep-fat frying of tortilla chips from a stochastic model. Journal of Food Engineering, 1996, 27, 279-290.	2.7	34
31	Modeling the kinetics of corn tortilla staling using stress relaxation data. Journal of Food Engineering, 2002, 53, 237-247.	2.7	34
32	Two-stage frying process for high-quality sweet-potato chips. Journal of Food Engineering, 2013, 118, 31-40.	2.7	32
33	Radiosensitization of <i>Salmonella</i> spp. and <i>Listeria</i> spp. in Readyâ€ŧoâ€Eat Baby Spinach Leaves. Journal of Food Science, 2011, 76, E141-8.	1.5	31
34	Combined Vacuum Impregnation and Electronâ€Beam Irradiation Treatment to Extend the Storage Life of Sliced White Button Mushrooms (<i>Agaricus bisporus</i>). Journal of Food Science, 2014, 79, E39-46.	1.5	27
35	Modeling the structural changes of tortilla chips during frying. Journal of Food Engineering, 2003, 60, 167-175.	2.7	26
36	OPTIMIZING ELECTRON BEAM IRRADIATION OF "TOMMY ATKINS" MANGOES (MANGIFERA INDICA L.). Journal of Food Process Engineering, 2007, 30, 436-457.	1.5	26

#	Article	IF	CITATIONS
37	Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods. Journal of Food Engineering, 2006, 74, 359-369.	2.7	25
38	Deâ€Oiling and Pretreatment for Highâ€Quality Potato Chips. Journal of Food Process Engineering, 2013, 36, 267-275.	1.5	25
39	Technology for processing of potato chips impregnated with red rootbeet phenolic compounds. Journal of Food Engineering, 2018, 228, 57-68.	2.7	25
40	Air-Impingement Drying of Tortilla Chips. Drying Technology, 1997, 15, 881-897.	1.7	23
41	Factors Affecting Radiation <i>D</i> â€Values (<i>D</i> ₁₀) of an <i>Escherichia Coli</i> Cocktail and <i>Salmonella</i> Typhimurium LT2 Inoculated in Fresh Produce. Journal of Food Science, 2012, 77, E104-11.	1.5	23
42	Feedforward control model for a twin-screw food extruder. Food Control, 1990, 1, 179-184.	2.8	22
43	Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins. Analytical Biochemistry, 2004, 334, 1-8.	1.1	22
44	Modeling the growth rates of Escherichia coli spp. and Salmonella Typhimurium LT2 in baby spinach leaves under slow cooling. Food Control, 2013, 29, 11-17.	2.8	22
45	Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment. Journal of Food Engineering, 2010, 97, 425-433.	2.7	20
46	Moisture desorption model for nonpareil almonds. Biosystems Engineering, 1989, 42, 123-133.	0.4	19
47	Effect of Raw Potato Composition on Acrylamide Formation in Potato Chips. Journal of Food Science, 2005, 70, E519-E525.	1.5	19
48	Monte Carlo simulation and dose distribution of low energy electron irradiation of an apple. Journal of Food Engineering, 2003, 60, 31-39.	2.7	18
49	Validation of irradiation of broccoli with a 10MeV electron beam accelerator. Journal of Food Engineering, 2008, 86, 595-603.	2.7	18
50	A process to decontaminate sliced fresh cucumber (Cucumis sativus) using electron beam irradiation. LWT - Food Science and Technology, 2018, 91, 95-101.	2.5	18
51	Radiation D10 values for Salmonella Typhimurium LT2 and an Escherichia coli cocktail in pecan nuts (Kanza cultivar) exposed to different atmospheres. Food Control, 2014, 39, 146-153.	2.8	16
52	Effects of Different Drying Processes on Oil Absorption and Microstructure of Tortilla Chips. Cereal Chemistry, 1997, 74, 216-223.	1.1	15
53	Quantitative assessment of the effectiveness of intervention steps to reduce the risk of contamination of ready-to-eat baby spinach with Salmonella. Food Control, 2013, 31, 410-418.	2.8	14
54	Quantifying growth of cold-adapted Listeria monocytogenes and Listeria innocua on fresh spinach leaves at refrigeration temperatures. Journal of Food Engineering, 2018, 224, 17-26.	2.7	14

#	Article	IF	CITATIONS
55	Effect of Time and Storage Conditions on the Rheological Properties of Masa for Corn Tortillas. LWT - Food Science and Technology, 1999, 32, 344-348.	2.5	13
56	BATCH VACUUM FRYING SYSTEM ANALYSIS FOR POTATO CHIPS. Journal of Food Process Engineering, 2012, 35, 863-873.	1.5	13
57	Prediction of targeted Salmonella enterica serovar typhimurium inactivation in fresh cut cantaloupe (Cucumis melo L.) using electron beam irradiation. Journal of Food Engineering, 2011, 103, 409-416.	2.7	11
58	An efficient treatment of ultra-heavy asphaltic crude oil using electron beam technology. Fuel, 2015, 154, 152-160.	3.4	11
59	Quantifying the effectiveness of washing treatments on the microbial quality of fresh-cut romaine lettuce and cantaloupe. LWT - Food Science and Technology, 2017, 86, 270-276.	2.5	11
60	Reduction of Oil in Tortilla Chips using Impingement Drying. LWT - Food Science and Technology, 1997, 30, 834-840.	2.5	10
61	MONTE CARLO-BASED FOOD IRRADIATION SIMULATOR. Journal of Food Process Engineering, 2006, 29, 72-88.	1.5	10
62	Effect of air- and vacuum-packaged atmospheres on the reduction of Salmonella on almonds by electron beam irradiation. LWT - Food Science and Technology, 2019, 116, 108389.	2.5	10
63	Assessing accumulation (growth and internal mobility) of Salmonella Typhimurium LT2 in fresh-cut cantaloupe (Cucumis melo L.) for optimization ofÂdecontamination strategies. Food Control, 2013, 32, 574-581.	2.8	9
64	Food Processing and Waste Within the Nexus Framework. Current Sustainable/Renewable Energy Reports, 2017, 4, 99-108.	1.2	9
65	Increased Phenolic Compounds in Potato Chips Vacuum Impregnated with Green Tea. Journal of Food Science, 2019, 84, 807-817.	1.5	9
66	THEORETICAL APPROACH FOR THE CALCULATION OF RADIATION <i>D</i> ₁₀ â€VALUE. Journal of Food Process Engineering, 2010, 33, 314-340.	1.5	8
67	Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation. Journal of Food Engineering, 2015, 149, 137-143.	2.7	8
68	Effect of intervention strategies on the risk of infection from Listeria monocytogenes due to consumption of fresh baby spinach leaves: A quantitative approach. LWT - Food Science and Technology, 2017, 80, 208-220.	2.5	8
69	Magnesium ion impregnation in potato slices to improve cell integrity and reduce oil absorption in potato chips during frying. Heliyon, 2020, 6, e05834.	1.4	8
70	Decontamination Systems. , 0, , 337-348.		7
71	Calcium chloride impregnation of potato slices using ultrasound to reduce oil absorption during frying. Journal of Food Process Engineering, 2021, 44, .	1.5	7
72	Effect of Temperature on Texture of Corn Tortilla With and Without Antistaling Agents. Cereal Chemistry, 2006, 83, 348-353.	1.1	6

ROSANA G MOREIRA

#	Article	IF	CITATIONS
73	Dose mapping of complex-shaped foods using electron-beam accelerators. Food Control, 2007, 18, 1223-1234.	2.8	6
74	Laboratory Investigation of E-Beam Heavy Oil Upgrading. , 2009, , .		6
75	Optimizing Irradiation Treatment of Shell Eggs Using Simulation. Journal of Food Science, 2011, 76, E173-7.	1.5	6
76	Utilization of Charged Particles as an Efficient Way to Improve Rheological Properties of Heavy Asphaltic Petroleum Fluids. , 2012, , .		5
77	Simultaneous Application of Heat and Electron Particles to Effectively Reduce the Viscosity of Heavy Deasphalted Petroleum Fluids. Energy & Fuels, 2013, 27, 5116-5127.	2.5	5
78	A bio-sensing strategy for the detection of prions in foods. LWT - Food Science and Technology, 2005, 38, 849-858.	2.5	4
79	Simulation of Gamma-Ray Irradiation of Lettuce Leaves in a 137Cs Irradiator Using MCNP. Progress in Nuclear Science and Technology, 2011, 2, 442-446.	0.3	3
80	Vacuum Frying of Fruits Applications in Fruit Processing. Contemporary Food Engineering, 2012, , 331-344.	0.2	2
81	Electron-Induced Chain Reactions of Heavy Petroleum Fluids—Dominant Process Variables. , 2012, , .		2
82	Effect of vacuum impregnation on quality of fresh and electron-beam irradiated highbush blueberries (Vaccinium corymbosumL.) under refrigerated storage. Journal of Food Processing and Preservation, 2018, 42, e13680.	0.9	2
83	Effect of post inoculation drying procedures on the reduction of Salmonella on almonds by thermal treatments. Food Research International, 2020, 130, 108857.	2.9	2
84	Validating Thermal Lethality to Salmonella enterica in Chicken Blood by Simulated Commercial Rendering. Microorganisms, 2020, 8, 2009.	1.6	2
85	Integration of electron beam technology into fresh produce wash water line: Effect of inoculum suspension medium and water quality parameters on the radioresistance of Salmonella Typhimurium ATCC 13311. Journal of Food Safety, 0, , e12946.	1.1	2
86	Agentâ€based simulation of crossâ€contamination of <i>Escherichia coli</i> <scp>O157</scp> : <scp>H7</scp> on lettuce during processing and temperature fluctuations during storage in a produce facility. Part 2: Model implementation. Journal of Food Process Engineering, 2022, 45, .	1.5	2
87	Agentâ€based simulation of crossâ€contamination of <i>Escherichia coli</i> à€‰ <scp>O157</scp> : <scp>H7</scp> On lettuce during processing with temperature fluctuations during storage in a produce facility. Part 1: Model development. Journal of Food Process Engineering, 2022. 45.	1.5	2
88	Frying: Vacuum. , 2010, , 693-696.		1
89	Determination of best pine wilt disease treatment using irradiation. Journal of Radiation Research and Applied Sciences, 2019, 12, 269-280.	0.7	1
90	Fundamentals of Food Irradiation. , 2021, , 1-18.		1

#	Article	IF	CITATIONS
91	Integrated electron beam irradiation treatment with hydrogen peroxide aqueous solution to inactivate <scp><i>Salmonella</i></scp> on grape tomatoes. Journal of Food Process Engineering, 2022, 45, .	1.5	1
92	Deep-Fat Frying of Foods. Food Additives, 2001, , .	0.1	0
93	Frying Oil Quality Measured Using Various Objective Methods. , 2002, , .		0
94	Mass Transfer: Steady-State. , 2010, , 1001-1004.		0
95	Frying: Deep-Fat. , 2010, , 689-692.		0
96	Irradiation: Pathogen Inactivation. , 2010, , 873-875.		0
97	Tortilla Processing. , 2010, , 1-3.		0
98	Capture of CO2 and Water While Driving for Use in the Food and Agricultural Systems. Circular Economy and Sustainability, 0, , 1.	3.3	0