List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3853038/publications.pdf Version: 2024-02-01

FIVIDA DELOSI

#	Article	IF	CITATIONS
1	Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Review of Molecular Diagnostics, 2022, 22, 77-100.	1.5	13
2	Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers, 2022, 14, 2565.	1.7	12
3	New promising developments for potential therapeutic applications of high-dose ascorbate as an anticancer drug. Hematology/ Oncology and Stem Cell Therapy, 2021, 14, 179-191.	0.6	3
4	Precision Medicine Treatment in Acute Myeloid Leukemia Is Not a Dream. Hemato, 2021, 2, 131-153.	0.2	3
5	Genetic Alterations of Metastatic Colorectal Cancer. Biomedicines, 2020, 8, 414.	1.4	27
6	Genetic Alterations in Renal Cancers: Identification of The Mechanisms Underlying Cancer Initiation and Progression and of Therapeutic Targets. Medicines (Basel, Switzerland), 2020, 7, 44.	0.7	13
7	Isocitrate Dehydrogenase Mutations in Myelodysplastic Syndromes and in Acute Myeloid Leukemias. Cancers, 2020, 12, 2427.	1.7	13
8	Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Medical Sciences (Basel, Switzerland), 2020, 8, 18.	1.3	72
9	Targeting Lactate Metabolism by Inhibiting MCT1 or MCT4 Impairs Leukemic Cell Proliferation, Induces Two Different Related Death-Pathways and Increases Chemotherapeutic Sensitivity of Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2020, 10, 621458.	1.3	29
10	Endothelial Progenitors in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1263, 85-115.	0.8	10
11	Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. Medicines (Basel, Switzerland), 2019, 6, 82.	0.7	68
12	Transcription factors implicated in late megakaryopoiesis as markers of outcome after azacitidine and allogeneic stem cell transplantation in myelodysplastic syndrome. Leukemia Research, 2019, 84, 106191.	0.4	5
13	CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers, 2019, 11, 1358.	1.7	98
14	Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers, 2019, 11, 260.	1.7	28
15	The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells. Haematologica, 2019, 104, 973-985.	1.7	31
16	Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. OncoTargets and Therapy, 2018, Volume 11, 131-155.	1.0	45
17	Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells, Molecules, and Diseases, 2018, 69, 57-64.	0.6	58
18	Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Medical Sciences (Basel, Switzerland), 2018, 6, 85.	1.3	9

#	Article	IF	CITATIONS
19	Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers, 2018, 10, 248.	1.7	258
20	Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences (Basel, Switzerland), 2018, 6, 31.	1.3	167
21	Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medicines (Basel, Switzerland), 2018, 5, 16.	0.7	123
22	Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Medical Sciences (Basel, Switzerland), 2017, 5, 28.	1.3	22
23	Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers, 2017, 9, 127.	1.7	112
24	Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution. Medicines (Basel, Switzerland), 2017, 4, 67.	0.7	67
25	miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Non-coding RNA, 2017, 3, 22.	1.3	169
26	Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines, 2017, 5, 65.	1.4	81
27	Effect of miR-204&211 and RUNX2 control on the fate of human mesenchymal stromal cells. Regenerative Medicine Research, 2017, 5, 2.	2.2	7
28	The forkhead box C1 (FOXC1) transcription factor is downregulated in acute promyelocytic leukemia. Oncotarget, 2017, 8, 84074-84085.	0.8	4
29	High-dose ascorbate and arsenic trioxide selectively kill acute myeloid leukemia and acute promyelocytic leukemia blasts <i>in vitro</i> . Oncotarget, 2017, 8, 32550-32565.	0.8	47
30	New Developments of Differentiation Therapy of Acute Myeloid Leukemia. Current Pharmacogenomics and Personalized Medicine, 2017, 14, 86-105.	0.2	0
31	Endothelial progenitor cells in hematologic malignancies. Stem Cell Investigation, 2016, 3, 26-26.	1.3	16
32	Targeted therapies in the treatment of adult acute myeloid leukemias: current status and future perspectives. International Journal of Hematologic Oncology, 2016, 5, 143-164.	0.7	6
33	Oxidative stress and hypoxia in normal and leukemic stem cells. Experimental Hematology, 2016, 44, 540-560.	0.2	89
34	PML-RAR alpha induces the downmodulation of HHEX: a key event responsible for the induction of an angiogenetic response. Journal of Hematology and Oncology, 2016, 9, 33.	6.9	5
35	Conditioned medium from human umbilical vein endothelial cells markedly improves the proliferation and differentiation of circulating endothelial progenitors. Blood Cells, Molecules, and Diseases, 2016, 61, 58-65.	0.6	14
36	Differential hypoxic regulation of the microRNA-146a/CXCR4 pathway in normal and leukemic monocytic cells: impact on response to chemotherapy. Haematologica, 2015, 100, 1160-1171.	1.7	20

#	Article	IF	CITATIONS
37	Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells. PLoS ONE, 2015, 10, e0126968.	1.1	17
38	MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leukemia and Lymphoma, 2015, 56, 1466-1474.	0.6	8
39	miR-21 is overexpressed in NPM1-mutant acute myeloid leukemias. Leukemia Research, 2015, 39, 221-228.	0.4	27
40	Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells, Molecules, and Diseases, 2015, 55, 336-346.	0.6	32
41	Cytotoxic effects of high concentrations of sodium ascorbate on human myeloid cell lines. Annals of Hematology, 2015, 94, 1807-1816.	0.8	31
42	A miRNA Signature in Human Cord Blood Stem and Progenitor Cells as Potential Biomarker of Specific Acute Myeloid Leukemia Subtypes. Journal of Cellular Physiology, 2015, 230, 1770-1780.	2.0	33
43	Human cord blood-derived hemogenic endothelium generates mast cells. Blood Cells, Molecules, and Diseases, 2015, 54, 195-197.	0.6	0
44	β-Blockers Promote Angiogenesis in the Mouse Aortic Ring Assay. Journal of Cardiovascular Pharmacology, 2014, 64, 21-27.	0.8	16
45	Endothelial progenitors. Blood Cells, Molecules, and Diseases, 2014, 52, 186-194.	0.6	33
46	CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomarker Research, 2014, 2, 4.	2.8	202
47	Transcriptional fine-tuning of microRNA-223 levels directs lineage choice of human hematopoietic progenitors. Cell Death and Differentiation, 2014, 21, 290-301.	5.0	57
48	The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias. Leukemia Research and Treatment, 2013, 2013, 1-14.	2.0	9
49	A candidate anti-HIV reservoir compound, auranofin, exerts a selective â€~anti-memory' effect by exploiting the baseline oxidative status of lymphocytes. Cell Death and Disease, 2013, 4, e944-e944.	2.7	49
50	Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cells, Molecules, and Diseases, 2012, 49, 20-28.	0.6	33
51	Identity and ranking of colonic mesenchymal stromal cells. Journal of Cellular Physiology, 2012, 227, 3291-3300.	2.0	27
52	Autocrine Role of Angiopoietins during Megakaryocytic Differentiation. PLoS ONE, 2012, 7, e39796.	1.1	19
53	Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium. PLoS ONE, 2012, 7, e51109.	1.1	23
54	Immunophenotypic features of acute myeloid leukaemia patients exhibiting high FLT3 expression not associated with mutations. British Journal of Haematology, 2011, 153, 33-42.	1.2	21

#	Article	IF	CITATIONS
55	CDDO-Im is a stimulator of megakaryocytic differentiation. Leukemia Research, 2011, 35, 534-544.	0.4	6
56	MicroRNA-146a and AMD3100, two ways to control CXCR4 expression in acute myeloid leukemias. Blood Cancer Journal, 2011, 1, e26-e26.	2.8	50
57	Mechanism of human Hb switching: a possible role of the kit receptor/miR 221-222 complex. Haematologica, 2010, 95, 1253-1260.	1.7	45
58	Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states. BMC Systems Biology, 2010, 4, 85.	3.0	23
59	A transcriptome-wide approach reveals the key contribution of NFI-A in promoting erythroid differentiation of human CD34+ progenitors and CML cells. Leukemia, 2010, 24, 1220-1223.	3.3	17
60	A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene, 2009, 28, 4034-4040.	2.6	81
61	PLZF-mediated control on c-kit expression in CD34+ cells and early erythropoiesis. Oncogene, 2009, 28, 2276-2288.	2.6	24
62	MicroRNAs in normal and malignant myelopoiesis. Leukemia Research, 2009, 33, 1584-1593.	0.4	30
63	NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls β-globin and G-CSF receptor expression. Blood, 2009, 114, 1753-1763.	0.6	57
64	A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nature Cell Biology, 2008, 10, 788-801.	4.6	214
65	MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Etsâ€1 and Meis1 transcription factors. British Journal of Haematology, 2008, 143, 570-580.	1.2	87
66	MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nature Cell Biology, 2007, 9, 775-787.	4.6	413
67	Methylation damage response in hematopoietic progenitor cells. DNA Repair, 2007, 6, 1170-1178.	1.3	13
68	In vitro dual effect of arsenic trioxide on hemopoiesis: Inhibition of erythropoiesis and stimulation of megakaryocytic maturation. Blood Cells, Molecules, and Diseases, 2006, 36, 59-76.	0.6	9
69	Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: focus on DNA repair genes. Leukemia, 2006, 20, 1978-1988.	3.3	31
70	Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. European Respiratory Journal, 2006, 27, 529-541.	3.1	180
71	MicroRNAs 17-5p/20a/106a Function as a Master Gene Complex Controlling Monocytopoiesis through AML1 Targeting Blood, 2006, 108, 1186-1186.	0.6	0
72	Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1496-R1503.	0.9	81

#	Article	IF	CITATIONS
73	MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18081-18086.	3.3	747
74	TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica, 2005, 90, 612-24.	1.7	84
75	Transplantation of low dose CD34 + Kdr + cells promotes vascular and muscular regeneration in is ischemic limbs. FASEB Journal, 2004, 18, 1737-1739.	0.2	120
76	Heart infarct in NOD‣CID mice: Therapeutic vasculogenesis by transplantation of human CD34 + cells and low dose CD34 + KDR + cells. FASEB Journal, 2004, 18, 1392-1394.	0.2	107
77	Impaired myelopoiesis in mice devoid of interferon regulatory factor 1. Leukemia, 2004, 18, 1864-1871.	3.3	42
78	Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death and Differentiation, 2003, 10, 905-913.	5.0	45
79	Stem cell factor protects erythroid precursor cells from chemotherapeutic agents via up-regulation of BCL-2 family proteins. Blood, 2003, 102, 87-93.	0.6	51
80	Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor. Blood, 2003, 101, 1316-1323.	0.6	141
81	Modulation by Growth Factors of the Expression of Interleukin 3 and Granulocyte-macrophage Colony-stimulating Factor Receptor Common Chain βc. Leukemia and Lymphoma, 2002, 43, 1645-1650.	0.6	3
82	Identification of the hemangioblast in postnatal life. Blood, 2002, 100, 3203-3208.	0.6	246
83	Mechanisms of differential transferrin receptor expression in normal hematopoiesis. FEBS Journal, 2000, 267, 6762-6774.	0.2	39
84	Expression of interleukin 3 and granulocyte–macrophage colonyâ€stimulating factor receptor common chain βc, β _{IT} in normal haematopoiesis: lineage specificity and proliferationâ€independent induction. British Journal of Haematology, 2000, 111, 441-451.	1.2	2
85	Hemoglobin switching in unicellular erythroid culture of sibling erythroid burst-forming units: kit ligand induces a dose-dependent fetal hemoglobin reactivation potentiated by sodium butyrate. Blood, 2000, 95, 3555-3561.	0.6	54
86	Expression of interleukin 3 and granulocyte-macrophage colony-stimulating factor receptor common chain betac, betaIT in normal haematopoiesis: lineage specificity and proliferation-independent induction. British Journal of Haematology, 2000, 111, 441-451.	1.2	13
87	Mechanisms of differential transferrin receptor expression in normal hematopoiesis. , 2000, 267, 6762.		1
88	T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte–macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS. Journal of General Virology, 2000, 81, 2905-2917.	1.3	37
89	PML/RARα fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood, 2000, 96, 1531-1537.	0.6	6
90	Hemoglobin switching in unicellular erythroid culture of sibling erythroid burst-forming units: kit ligand induces a dose-dependent fetal hemoglobin reactivation potentiated by sodium butyrate. Blood, 2000, 95, 3555-3561.	0.6	0

#	Article	IF	CITATIONS
91	KDR Receptor: A Key Marker Defining Hematopoietic Stem Cells. Science, 1999, 285, 1553-1558.	6.0	449
92	Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis Journal of Clinical Investigation, 1995, 95, 2346-2358.	3.9	115
93	Stringently purified human hematopoietic progenitors/stem cells: Analysis of cellular/molecular mechanisms underlying early hematopoiesis. Stem Cells, 1993, 11, 356-370.	1.4	15
94	Pure Human Hematopoietic Progenitors: Direct Inhibitory Effect of Transforming Growth Factors-?1 and -?2. Annals of the New York Academy of Sciences, 1991, 628, 84-91.	1.8	17
95	Reactivation of HbF synthesis in normal adult erythroid bursts by IL-3. British Journal of Haematology, 1990, 74, 114-117.	1.2	15
96	Molecular mechanisms underlying erythropoiesis: Cycling activity of adult BFU-e relates to their requirement for c-myb function and potential for HbF synthesis. International Journal of Cell Cloning, 1990, 8, 314-334.	1.6	3
97	Expression of c-fos in Human Normal and Neoplastic Monocyte-Macrophage Differentiation. Annals of the New York Academy of Sciences, 1987, 511, 277-283.	1.8	1
98	The EL2 Rat Fibroblasts Line: Differential Effects of Growth Factors (EGF, PDGF, FGF, TPA and TGF?) on Cell Proliferation and c-fos Expression. Annals of the New York Academy of Sciences, 1987, 511, 318-328.	1.8	15
99	Colour Blindness Distribution in the Male Population of Rome. Human Heredity, 1986, 36, 263-265.	0.4	10
100	Proliferative response and oncogene expression induced by epidermal growth factor in EL2 rat fibroblasts Molecular and Cellular Biology, 1986, 6, 2275-2278.	1.1	22
101	Molecular mechanisms regulating the synthesis of transferrin receptors and ferritin in human erythroleukemic cell lines. FEBS Letters, 1985, 183, 223-227.	1.3	13