Tomas Valenta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852826/publications.pdf Version: 2024-02-01

TOMAS VALENTA

#	Article	IF	CITATIONS
1	Differential regulation of β-catenin-mediated transcription via N-Âand C-terminal co-factors governs identity of murine intestinal epithelial stem cells. Nature Communications, 2021, 12, 1368.	12.8	9
2	Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage. Cell Reports, 2021, 36, 109484.	6.4	18
3	Parsing β-catenin's cell adhesion and Wnt signaling functions in malignant mammary tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
4	The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene, 2021, 40, 6195-6209.	5.9	14
5	Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model. IScience, 2021, 24, 103369.	4.1	4
6	Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biology, 2020, 18, e3001032.	5.6	53
7	WNT ligands control initiation and progression of human papillomavirus-driven squamous cell carcinoma. Oncogene, 2018, 37, 3753-3762.	5.9	24
8	Mutations in <i>Bcl9</i> and <i>Pygo</i> genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes and Development, 2018, 32, 1443-1458.	5.9	43
9	Myocardial β-Catenin-BMP2 signaling promotes mesenchymal cell proliferation during endocardial cushion formation. Journal of Molecular and Cellular Cardiology, 2018, 123, 150-158.	1.9	8
10	Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver. Progress in Molecular Biology and Translational Science, 2018, 153, 1-19.	1.7	8
11	GL1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature, 2018, 558, 449-453.	27.8	277
12	Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. European Heart Journal, 2017, 38, ehw116.	2.2	134
13	A cytoplasmic role of Wnt/β-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Science Signaling, 2017, 10, .	3.6	50
14	Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein–protein interfaces of nuclear factors. British Journal of Pharmacology, 2017, 174, 4600-4610.	5.4	55
15	Generation of genome-modified <i>Drosophila</i> cell lines using SwAP. Fly, 2017, 11, 303-311.	1.7	5
16	Probing the canonicity of the Wnt/Wingless signaling pathway. PLoS Genetics, 2017, 13, e1006700.	3.5	39
17	Drosophila DDX3/Belle Exerts Its Function Outside of the Wnt/Wingless Signaling Pathway. PLoS ONE, 2016, 11, e0166862.	2.5	1
18	A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway. Cell Discovery, 2016, 2, 15039.	6.7	17

TOMAS VALENTA

#	Article	IF	CITATIONS
19	Wnt Ligands Secreted by Subepithelial Mesenchymal Cells Are Essential for the Survival of Intestinal Stem Cells and Gut Homeostasis. Cell Reports, 2016, 15, 911-918.	6.4	208
20	β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nature Communications, 2016, 7, 12389.	12.8	31
21	Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biology, 2015, 13, 103.	3.8	42
22	Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biology, 2015, 13, 24.	3.8	9
23	BCL9/9L-β-catenin Signaling is Associated With Poor Outcome in Colorectal Cancer. EBioMedicine, 2015, 2, 1932-1943.	6.1	58
24	Wnt/β-Catenin Signaling Regulates Sequential Fate Decisions of Murine Cortical Precursor Cells. Stem Cells, 2015, 33, 170-182.	3.2	59
25	Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties. Circulation Research, 2015, 116, 398-406.	4.5	90
26	Protection of Armadillo/β-Catenin by Armless, a Novel Positive Regulator of Wingless Signaling. PLoS Biology, 2014, 12, e1001988.	5.6	17
27	Powerful <i>Drosophila</i> screens that paved the wingless pathway. Fly, 2014, 8, 218-225.	1.7	16
28	Coordination of Patterning and Growth by the Morphogen DPP. Current Biology, 2014, 24, R245-R255.	3.9	142
29	Reflections on cell competition. Seminars in Cell and Developmental Biology, 2014, 32, 137-144.	5.0	30
30	Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes and Development, 2014, 28, 1879-1884.	5.9	34
31	The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription. Development (Cambridge), 2013, 140, 2377-2386.	2.5	28
32	A RING finger to wed TCF and $\hat{I}^2 \hat{e} \epsilon$ atenin. EMBO Reports, 2013, 14, 295-296.	4.5	3
33	Manipulating the Sensitivity of Signal-Induced Repression: Quantification and Consequences of Altered Brinker Gradients. PLoS ONE, 2013, 8, e71224.	2.5	7
34	Functional Characterization of <i>Drosophila</i> microRNAs by a Novel <i>in Vivo</i> Library. Genetics, 2012, 192, 1543-1552.	2.9	45
35	The many faces and functions of \hat{l}^2 -catenin. EMBO Journal, 2012, 31, 2714-2736.	7.8	1,277
36	Probing transcription-specific outputs of \hat{l}^2 -catenin in vivo. Genes and Development, 2011, 25, 2631-2643.	5.9	112

TOMAS VALENTA

#	ARTICLE	IF	CITATIONS
37	Wnt Trafficking: New Insights into Wnt Maturation, Secretion and Spreading. Traffic, 2010, 11, 1265-1271.	2.7	127
38	Crosstalk between a Nuclear Receptor and β-Catenin Signaling Decides Cell Fates in the C. elegans Somatic Gonad. Developmental Cell, 2006, 11, 203-211.	7.0	34
39	HIC1 attenuates Wnt signaling by recruitment of TCF-4 and \hat{l}^2 -catenin to the nuclear bodies. EMBO Journal, 2006, 25, 2326-2337.	7.8	91
40	HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells. Nucleic Acids Research, 2003, 31, 2369-2380.	14.5	109
41	DIFFERING SENSITIVITY OF TUMOR CELLS TO APOPTOSIS INDUCED BY IRON DEPRIVATION IN VITRO. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 450.	1.5	22