Yinglong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research and Design, 2017, 117, 318-335.	5.6	243
2	Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy, 2018, 148, 296-308.	8.8	205
3	Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Separation and Purification Technology, 2016, 169, 66-77.	7.9	113
4	Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Computers and Chemical Engineering, 2015, 76, 137-149.	3.8	103
5	A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid. Journal of Cleaner Production, 2019, 213, 480-490.	9.3	101
6	Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation. Journal of Cleaner Production, 2019, 218, 212-224.	9.3	94
7	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 3650-3657.	13.8	94
8	Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope. Journal of Chemical Technology and Biotechnology, 2017, 92, 2433-2444.	3.2	84
9	Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. Chemical Engineering and Processing: Process Intensification, 2016, 109, 190-198.	3.6	76
10	Separation of thioglycolic acid from its aqueous solution by ionic liquids: Ionic liquids selection by the COSMO-SAC model and liquid-liquid phase equilibrium. Journal of Chemical Thermodynamics, 2018, 118, 263-273.	2.0	76
11	Control of extractive distillation process for separating heterogenerous ternary azeotropic mixture via adjusting the solvent content. Separation and Purification Technology, 2018, 191, 8-26.	7.9	75
12	Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process. Energy, 2020, 191, 116588.	8.8	74
13	Extractive distillation and pressure-swing distillation for THF/ethanol separation. Journal of Chemical Technology and Biotechnology, 2015, 90, 1463-1472.	3.2	72
14	Techno-economic analysis of biomass-to-hydrogen process in comparison with coal-to-hydrogen process. Energy, 2019, 185, 1063-1075.	8.8	72
15	A review of extractive distillation from an azeotropic phenomenon for dynamic control. Chinese Journal of Chemical Engineering, 2019, 27, 1510-1522.	3.5	71
16	Separation of azeotrope (ethanol and ethyl methyl carbonate) by different imidazolium-based ionic liquids: Ionic liquids interaction analysis and phase equilibrium measurements. Journal of Molecular Liquids, 2018, 261, 89-95.	4.9	70
17	Ionic liquid-based CO2 capture in power plants for low carbon emissions. International Journal of Greenhouse Gas Control, 2018, 75, 134-139.	4.6	69
18	Heat-Integrated Pressure-Swing-Distillation Process for Separation of Tetrahydrofuran/Methanol with Different Feed Compositions. Industrial & Amp; Engineering Chemistry Research, 2014, 53, 7186-7194.	3.7	65

#	Article	IF	CITATIONS
19	Effect of Solvent Flow Rates on Controllability of Extractive Distillation for Separating Binary Azeotropic Mixture. Industrial & Engineering Chemistry Research, 2015, 54, 12908-12919.	3.7	62
20	Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process. Computers and Chemical Engineering, 2016, 95, 97-107.	3.8	61
21	Energy, exergy, economic and environmental (4E) analysis of an integrated process combining CO2 capture and storage, an organic Rankine cycle and an absorption refrigeration cycle. Energy Conversion and Management, 2020, 210, 112738.	9.2	61
22	Liquid–liquid equilibria for ternary mixtures of waterÂ+ 2-propanolÂ+ 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids at 298.15ÂK. Fluid Phase Equilibria, 2016, 412, 205-210.	2.5	59
23	Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology. Applied Thermal Engineering, 2019, 154, 519-529.	6.0	59
24	Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming. Energy, 2020, 199, 117488.	8.8	59
25	Choline chloride based deep eutectic solvents selection and liquid-liquid equilibrium for separation of dimethyl carbonate and ethanol. Journal of Molecular Liquids, 2019, 275, 347-353.	4.9	58
26	Separation of cresol from coal tar by imidazolium-based ionic liquid [Emim][SCN]: Interaction experiment. Fuel, 2020, 264, 116908.	6.4	58
27	Process evaluation on the separation of ethyl acetate and ethanol using extractive distillation with ionic liquid. Separation and Purification Technology, 2017, 181, 44-52.	7.9	57
28	Molecular Mechanism and Extraction Performance Evaluation for Separation of Methanol and <i>n</i> -Hexane via Ionic Liquids as Extractant. ACS Sustainable Chemistry and Engineering, 2020, 8, 8700-8712.	6.7	57
29	Control of Heat Integrated Pressure-Swing-Distillation Process for Separating Azeotropic Mixture of Tetrahydrofuran and Methanol. Industrial & Engineering Chemistry Research, 2015, 54, 1646-1655.	3.7	54
30	Control of Extractive Distillation and Partially Heat-Integrated Pressure-Swing Distillation for Separating Azeotropic Mixture of Ethanol and Tetrahydrofuran. Industrial & Engineering Chemistry Research, 2015, 54, 8533-8545.	3.7	53
31	Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. Journal of Process Control, 2016, 42, 59-76.	3.3	53
32	Comparison of pressure-swing distillation and extractive distillation with varied-diameter column in economics and dynamic control. Journal of Process Control, 2017, 49, 9-25.	3.3	52
33	Control of an energy-saving side-stream extractive distillation process with different disturbance conditions. Separation and Purification Technology, 2019, 210, 195-208.	7.9	52
34	Mechanism Analysis for Separation of Cyclohexane and <i>tert</i> Butanol System via lonic Liquids as Extractants and Process Optimization. ACS Sustainable Chemistry and Engineering, 2019, 7, 19984-19992.	6.7	50
35	Separation of azeotrope (allyl alcohol†+†water): Isobaric vapour-liquid phase equilibrium measurements and extractive distillation. Journal of Chemical Thermodynamics, 2018, 118, 139-146.	2.0	48
36	Efficient Extraction of Neutral Heterocyclic Nitrogen Compounds from Coal Tar via Ionic Liquids and Its Mechanism Analysis. Energy & Fuels, 2018, 32, 9358-9370.	5.1	48

#	Article	IF	CITATIONS
37	An improvement scheme for pressure-swing distillation with and without heat integration through an intermediate connection to achieve energy savings. Computers and Chemical Engineering, 2018, 119, 439-449.	3.8	47
38	Computer-Aided Screening of Ionic Liquids As Entrainers for Separating Methyl Acetate and Methanol via Extractive Distillation. Industrial & Engineering Chemistry Research, 2018, 57, 9656-9664.	3.7	47
39	Separation of isopropyl alcohol and isopropyl ether with ionic liquids as extractant based on quantum chemical calculation and liquid-liquid equilibrium experiment. Separation and Purification Technology, 2020, 247, 116937.	7.9	47
40	Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment. Energy, 2020, 204, 117961.	8.8	47
41	A tribo-positive Fe@MoS ₂ piezocatalyst for the durable degradation of tetracycline: degradation mechanism and toxicity assessment. Environmental Science: Nano, 2020, 7, 1704-1718.	4.3	47
42	lsobaric vapour–liquid equilibrium measurements and extractive distillation process for the azeotrope of (N , N -dimethylisopropylamine + acetone). Journal of Chemical Thermodynamics, 2018, 122, 154-161.	2.0	45
43	Liquid-liquid equilibrium determination and thermodynamics modeling for extraction of isopropanol from its aqueous solution. Fluid Phase Equilibria, 2018, 458, 40-46.	2.5	45
44	Application of Mixed Solvent To Achieve an Energy-Saving Hybrid Process Including Liquid–Liquid Extraction and Heterogeneous Azeotropic Distillation. Industrial & Engineering Chemistry Research, 2019, 58, 2379-2388.	3.7	44
45	Heat Integration and Control of a Triple-Column Pressure-Swing Distillation Process. Industrial & Engineering Chemistry Research, 2017, 56, 2150-2167.	3.7	43
46	Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): Isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation. Journal of Chemical Thermodynamics, 2017, 115, 19-26.	2.0	43
47	Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis. Energy, 2021, 229, 120774.	8.8	43
48	Multiscale Exploration and Experimental Insights into Separating Neutral Heterocyclic Nitrogen Compounds Using [emim][NO ₃] as an Extractant. ACS Sustainable Chemistry and Engineering, 2020, 8, 5662-5673.	6.7	42
49	Control of a Ternary Extractive Distillation Process with Recycle Splitting Using a Mixed Entrainer. Industrial & Engineering Chemistry Research, 2018, 57, 339-351.	3.7	41
50	Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis. Journal of Molecular Liquids, 2020, 306, 112911.	4.9	41
51	Advanced Exergy and Exergoeconomic Analysis of Cascade Absorption Refrigeration System Driven by Low-Grade Waste Heat. ACS Sustainable Chemistry and Engineering, 2019, 7, 16843-16857.	6.7	40
52	Mechanism Analysis, Economic Optimization, and Environmental Assessment of Hybrid Extractive Distillation–Pervaporation Processes for Dehydration of <i>n</i> -Propanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 4561-4571.	6.7	40
53	Conceptual design and comprehensive analysis for novel municipal sludge gasification-based hydrogen production via plasma gasifier. Energy Conversion and Management, 2021, 245, 114635.	9.2	40
54	Screening of Imidazole Ionic Liquids for Separating the Acetone– <i>n</i> -Hexane Azeotrope by COSMO-SAC Simulations and Experimental Verification. ACS Sustainable Chemistry and Engineering, 2020, 8, 4440-4450.	6.7	39

#	Article	IF	CITATIONS
55	Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis. Chemical Engineering Research and Design, 2021, 148, 462-472.	5.6	39
56	Measurement and correlation of phase equilibria for ternary systems of waterÂ+Â(ethanol/1-propanol)Â+Â1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at 298.15ÂK. Fluid Phase Equilibria, 2016, 427, 340-344.	2.5	38
57	Advanced exergy and exergoeconomic analyses of a cascade absorption heat transformer for the recovery of low grade waste heat. Energy Conversion and Management, 2020, 205, 112392.	9.2	38
58	Energy, economic and environmental evaluations for the separation of ethyl acetate/ethanol/water mixture via distillation and pervaporation unit. Chemical Engineering Research and Design, 2020, 140, 14-25.	5.6	37
59	Optimization of Pressure-Swing Batch Distillation with and without Heat Integration for Separating Dichloromethane/Methanol Azeotrope Based on Minimum Total Annual Cost. Industrial & Engineering Chemistry Research, 2017, 56, 4104-4112.	3.7	36
60	Liquid-liquid extraction of methanol from its mixtures with hexane using three imidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2019, 138, 189-195.	2.0	35
61	Multiscale modeling and liquid-liquid equilibria insights for the extraction of heterocyclic nitrogen compounds from coal tar via [emim][TOS] as extractant. Journal of Molecular Liquids, 2019, 277, 825-832.	4.9	35
62	Liquid-liquid equilibria for azeotropic mixture of methyl tert-butyl ether and methanol with ionic liquids at different temperatures. Journal of Chemical Thermodynamics, 2019, 132, 76-82.	2.0	35
63	Progress and Opportunities for Utilizing Seeding Techniques in Crystallization Processes. Organic Process Research and Development, 2021, 25, 1496-1511.	2.7	35
64	Separation of Dimethyl Carbonate and Methanol by Deep Eutectic Solvents: Liquid–Liquid Equilibrium Measurements and Thermodynamic Modeling. Journal of Chemical & Engineering Data, 2018, 63, 1234-1239.	1.9	34
65	Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study. Chemical Engineering Communications, 2019, 206, 1199-1217.	2.6	34
66	Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope. Chemical Engineering and Processing: Process Intensification, 2016, 110, 160-171.	3.6	33
67	Liquid-liquid equilibrium measurements and correlation for phase behaviors of alcohols+heptane+ILs ternary systems. Journal of Chemical Thermodynamics, 2017, 106, 153-159.	2.0	33
68	Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes. Energy, 2021, 219, 119600.	8.8	33
69	Molecular Dynamics Evaluation of Removal of Acid Gases from SNG by Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2019, 7, 18093-18104.	6.7	32
70	Energy-saving investigation of organic material recovery from wastewater via thermal coupling extractive distillation combined with heat pump based on thermoeconomic and environmental analysis. Chemical Engineering Research and Design, 2021, 146, 441-450.	5.6	32
71	Optimization of liquid–liquid extraction combined with either heterogeneous azeotropic distillation or extractive distillation processes to reduce energy consumption and carbon dioxide emissions. Chemical Engineering Research and Design, 2018, 132, 399-408.	5.6	31
72	Energy-Saving Exploration of Mixed Solvent Extractive Distillation Combined with Thermal Coupling or Heat Pump Technology for the Separation of an Azeotrope Containing Low-Carbon Alcohol. Industrial & Engineering Chemistry Research, 2020, 59, 13204-13219.	3.7	31

#	Article	IF	CITATIONS
73	Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: Process design and control strategies. Chemical Engineering Research and Design, 2018, 135, 52-66.	5.6	30
74	Improving the energy efficiency and production performance of the cyclohexanone ammoximation process via thermodynamics, kinetics, dynamics, and economic analyses. Energy Conversion and Management, 2019, 192, 100-113.	9.2	30
75	A Brief Review of the Prediction of Liquid–Liquid Equilibrium of Ternary Systems Containing Ionic Liquids by the COSMO-SAC Model. Journal of Solution Chemistry, 2019, 48, 1547-1563.	1.2	30
76	Ternary Liquid–Liquid Equilibrium of Azeotropes (Ester + Alcohol) with Different Ionic Liquids at <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2017, 62, 532-538.	1.9	29
77	Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures. Separation and Purification Technology, 2018, 201, 79-95.	7.9	29
78	Quantum chemical calculation, molecular dynamics simulation and process design for separation of heptane - butanol using ionic liquids extraction. Journal of Molecular Liquids, 2020, 316, 113851.	4.9	29
79	Extraction and mechanism exploration for separating cresols from coal tar by ionic liquid ethanolamine lactate. Journal of Molecular Liquids, 2020, 305, 112845.	4.9	29
80	Liquid-liquid phase equilibrium and interaction exploration for separation of azeotrope (2,2,3,3-tetrafluoro-1-propanolÂ+Âwater) with two imidazolium-based ionic liquids. Journal of Molecular Liquids, 2020, 300, 112266.	4.9	28
81	Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model. Green Energy and Environment, 2021, 6, 380-391.	8.7	28
82	Vapor–liquid equilibrium for binary and ternary systems of tetrahydrofuran, ethyl acetate and N-methyl pyrrolidone at pressure 101.3â€⁻kPa. Journal of Molecular Liquids, 2018, 268, 19-25.	4.9	27
83	Ternary liquid–liquid equilibrium of an azeotropic mixture (hexaneÂ+ methanol) with different imidazolium-based ionic liquids at TÂ= 298.15ÂK and 101.325ÂkPa. Fluid Phase Equilibria, 2018, 461, 51-56.	2.5	26
84	Process design of carbon dioxide and ethane separation using ionic liquid by extractive distillation. Journal of Chemical Technology and Biotechnology, 2018, 93, 887-896.	3.2	26
85	Economic and Environmental Evaluation for Purification of Diisopropyl Ether and Isopropyl Alcohol via Combining Distillation and Pervaporation Membrane. ACS Sustainable Chemistry and Engineering, 2019, 7, 20170-20179.	6.7	26
86	Vapour–liquid equilibrium and extractive distillation for separation of azeotrope isopropyl alcohol and diisopropyl ether. Journal of Chemical Thermodynamics, 2019, 131, 294-302.	2.0	26
87	Energy, exergy, economy analysis and multi-objective optimization of a novel cascade absorption heat transformer driven by low-level waste heat. Energy Conversion and Management, 2020, 221, 113162.	9.2	26
88	Novel Postcombustion Capture Process for CO ₂ from the Flue Gas of Coal-Fired Power Plants Using a Green Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 2236-2245.	6.7	26
89	Liquid-liquid equilibrium measurements and interaction explorations for separation of azeotrope n-butyl acetate and n-butanol using three ionic liquids. Journal of Chemical Thermodynamics, 2021, 155, 106349.	2.0	26
90	Dynamic control of the pressure-swing distillation process for THF/ethanol/water separation with and without thermal integration. Separation and Purification Technology, 2021, 268, 118686.	7.9	26

#	Article	IF	CITATIONS
91	Liquid–liquid equilibrium for the ternary systems water+2-methyl-1-propanol+butyl acetate and water+2-methyl-2-propanol+butyl acetate at (298.15 and 323.15)K. Fluid Phase Equilibria, 2014, 381, 60-66.	2.5	25
92	Design and Control of a Middle Vessel Batch Distillation Process for Separating the Methyl Formate/Methanol/Water Ternary System. Industrial & Engineering Chemistry Research, 2016, 55, 2760-2768.	3.7	25
93	Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water by extractive distillation using ionic liquids: Vapor-liquid equilibrium measurements and interaction analysis. Journal of Molecular Liquids, 2019, 292, 111424.	4.9	25
94	Control of a pressure-swing distillation process for benzene/isopropanol/water separation with and without heat integration. Separation and Purification Technology, 2020, 236, 116311.	7.9	25
95	Heat integration and dynamic control for separating the ternary azeotrope of butanone/isopropanol/n-heptane via pressure-swing distillation. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108657.	3.6	25
96	Ternary Liquid–Liquid Equilibrium of Azeotropes (Water +2-Propanol) with Ionic Liquids ([Dmim][NTf ₂]) at Different Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 1667-1672.	1.9	24
97	Isobaric Vapor–liquid Equilibrium for Three Binary Systems of Ethyl Acetate + Propyl Acetate, Ethyl Acetate + Propylene Carbonate, and Propyl Acetate + Propylene Carbonate at 101.3 kPa. Journal of Chemical & Engineering Data, 2018, 63, 1588-1595.	1.9	24
98	Deep eutectic solvents effect on vapor-liquid phase equilibrium for separation of allyl alcohol from its aqueous solution. Journal of Molecular Liquids, 2019, 279, 524-529.	4.9	24
99	Modeling and comprehensive analysis of food waste gasification process for hydrogen production. Energy Conversion and Management, 2022, 258, 115509.	9.2	24
100	Ternary liquid-liquid equilibria for systems containing (dimethyl carbonate or methyl) Tj ETQq0 0 0 rgBT /Overloc Thermodynamics, 2018, 121, 49-54.	2.0 R 10 Tf 50	387 Td (acet 23
101	Liquid–Liquid Equilibrium of Isobutyl Acetate + Isobutyl Alcohol + Imidazolium-Based Ionic Liquids at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2019, 64, 778-783.	1.9	23
102	Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process. Chemical Engineering Research and Design, 2019, 128, 85-94.	5.6	23
103	Liquid-liquid measurement and correlation for separation of azeotrope (dimethyl carbonate and) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.5	Г /Qyerlock 1
104	Molecular Mechanism, Thermoeconomic, and Environmental Impact for Separation of Isopropanol and Water Using the Choline-Based DESs as Extractants. Industrial & Engineering Chemistry Research, 2020, 59, 16077-16087.	3.7	23
105	Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation. Separation and Purification Technology, 2021, 276, 119288.	7.9	23
106	Extraction mechanism analysis and energy saving enhancement of extraction separation of methyl tert-butyl ether and methanol by ionic liquid based on molecular dynamics simulation. Separation and Purification Technology, 2021, 279, 119717.	7.9	23
107	Salts effect on isobaric vaporâ ``liquid equilibrium for separation of the azeotropic mixture allyl alcoholÂ+ water. Fluid Phase Equilibria, 2018, 457, 11-17.	2.5	22
108	Vapor–Liquid Phase Equilibrium for Separation of Isopropanol from Its Aqueous Solution by Choline Chloride-Based Deep Eutectic Solvent Selected by COSMO-SAC Model. Journal of Chemical & Engineering Data, 2019, 64, 1338-1348.	1.9	22

#	Article	IF	CITATIONS
109	Isobaric vapor-liquid equilibrium of a ternary system of ethyl acetate + propyl acetate + dimethyl sulfoxide and binary systems of ethyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide at 101.3 kPa. Journal of Chemical Thermodynamics, 2019, 135, 116-123.	2.0	22
110	Liquid-liquid equilibrium measurements and interaction exploration for separation of isobutyl alcohol†+†isobutyl acetate by imidazolium-based ionic liquids with different anions. Journal of Chemical Thermodynamics, 2020, 141, 105932.	2.0	22
111	Design and optimization for the separation of cyclohexane-isopropanol-water using mixed extractants with thermal integration based on molecular mechanism. Separation and Purification Technology, 2021, 266, 118541.	7.9	22
112	Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method. Frontiers of Chemical Science and Engineering, 2020, 14, 824-833.	4.4	21
113	Separation of <i>m</i> -Cresol from Coal Tar Model Oil Using Propylamine-Based Ionic Liquids: Extraction and Interaction Mechanism Exploration. ACS Omega, 2020, 5, 23090-23098.	3.5	21
114	Separation of azeotropic mixture (acetoneÂ+Ân-heptane) by extractive distillation with intermediate and heavy boiling entrainers: Vapour-liquid equilibrium measurements and correlation. Journal of Chemical Thermodynamics, 2021, 152, 106284.	2.0	21
115	Measurement and Thermodynamic Modeling of Ternary Liquid–Liquid Equilibrium for Extraction of 2,6-Xylenol from Aromatic Hydrocarbon Mixtures with Different Solvents. Journal of Chemical & Engineering Data, 2021, 66, 330-337.	1.9	21
116	Application of energy-saving hybrid distillation-pervaporation process for recycling organics from wastewater based on thermoeconomic and environmental analysis. Journal of Cleaner Production, 2021, 294, 126297.	9.3	21
117	Life cycle water footprint comparison of biomass-to-hydrogen and coal-to-hydrogen processes. Science of the Total Environment, 2021, 773, 145056.	8.0	21
118	Molecular mechanism and extraction performance evaluation of ionic liquids for extraction process of n-heptane/n-propanol. Separation and Purification Technology, 2021, 276, 119342.	7.9	21
119	Energy consumption, environmental performance, and techno-economic feasibility analysis of the biomass-to-hydrogen process with and without carbon capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 106752.	6.7	21
120	Measurement and correlation of liquid–liquid equilibrium data for 2-methyl-1-propanol+2-propanol+water at several temperatures. Fluid Phase Equilibria, 2013, 340, 37-41.	2.5	20
121	Effect of multi-recycle streams on triple-column pressure-swing distillation optimization. Chemical Engineering Research and Design, 2017, 127, 215-222.	5.6	20
122	Batch-to-continuous process design and economic, energy, exergy, and environmental analyses of Claisen ester condensation based on diethyl 2-ethyl-2-phenylmalonate synthesis. Journal of Cleaner Production, 2020, 251, 119619.	9.3	20
123	Insight into separation of azeotrope in wastewater to achieve cleaner production by extractive distillation and pressure-swing distillation based on phase equilibrium. Journal of Cleaner Production, 2020, 276, 124213.	9.3	20
124	Design and comprehensive analysis of a novel pressure-swing batch distillation process for the separation of a binary azeotrope with various boiling behaviors. Separation and Purification Technology, 2020, 251, 117329.	7.9	20
125	Molecular Mechanism and Absorption Performance Evaluation of CO ₂ Capture from the PCC Process by Monoethanolamine-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2021, 60, 1483-1493.	3.7	20
126	Liquid–Liquid Extraction of Butanol from Heptane + Butanol Mixture by Ionic Liquids. Journal of Chemical & Engineering Data, 2017, 62, 4273-4278.	1.9	19

#	Article	IF	CITATIONS
127	Liquid Liquid Equilibrium Data for the Separation of Acetone from <i>n</i> -Heptane Using Four Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2019, 64, 1202-1208.	1.9	18
128	Vapor–liquid equilibrium of three binary systems for acetone, diethylamine and N-methyl pyrrolidone at atmospheric pressure. Journal of Molecular Liquids, 2019, 274, 278-284.	4.9	18
129	Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water: Liquid-liquid equilibrium measurements and interaction exploration. Journal of Chemical Thermodynamics, 2020, 142, 106011.	2.0	18
130	Sustainable wastewater treatment via PV-distillation hybrid process for the separation of ethyl acetate/isopropanol/water. Separation and Purification Technology, 2021, 257, 117919.	7.9	18
131	Multi-objective optimization of a clean, high-efficiency synthesis process of methyl-ethyl-ketone oxime from ammoximation. Journal of Cleaner Production, 2021, 315, 128176.	9.3	18
132	Liquid–Liquid Equilibrium for the Ternary System 2-Methyl-1-propanol + 3-Methyl-1-butanol + Water at (298.15, 323.15, and 348.15) K. Journal of Chemical & Engineering Data, 2012, 57, 2689-2695.	1.9	17
133	Liquid–liquid equilibrium for the ternary system of 1-butanol+3-methyl-1-butanol+water at different temperatures. Fluid Phase Equilibria, 2012, 335, 14-19.	2.5	17
134	Measurement and correlation of ternary phase equilibrium of (hexane + ethyl acetate) with four ILs. Journal of Chemical Thermodynamics, 2018, 116, 114-120.	2.0	17
135	Efficient extractive distillation design for separating binary azeotrope via thermodynamic and dynamic analyses. Separation and Purification Technology, 2020, 238, 116425.	7.9	17
136	Separation of azeotropic mixture isopropyl alcoholÂ+ ethyl acetate by extractive distillation: Vapor-liquid equilibrium measurements and interaction exploration. Fluid Phase Equilibria, 2020, 507, 112428.	2.5	17
137	Entrainers selection and vapour-liquid equilibrium measurements for separating azeotropic mixtures (ethanolÂ+Ân-hexane/cyclohexane) by extractive distillation. Journal of Chemical Thermodynamics, 2020, 144, 106070.	2.0	17
138	Molecular kinetic extraction mechanism analysis of 1-butanol from n-heptane-1-butanol by choline-based DESs as extractants. Journal of Molecular Liquids, 2021, 322, 114665.	4.9	17
139	Mechanism analysis of extractive distillation for separation of acetic acid and water based on quantum chemical calculation and molecular dynamics simulation. Journal of Molecular Liquids, 2021, 332, 115866.	4.9	17
140	Extraction and interaction insights for enhanced separation of phenolic compounds from model coal tar using a hydroxyl-functionalized ionic liquid. Chemical Engineering Research and Design, 2022, 178, 567-574.	5.6	17
141	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements. Journal of Chemical Thermodynamics, 2019, 138, 205-210.	2.0	16
142	Separation of the mixture (isopropyl alcohol + diisopropyl ether + n-propanol): Entrainer selection, interaction exploration and vapour-liquid equilibrium measurements. Journal of Chemical Thermodynamics, 2019, 135, 27-34.	2.0	16
143	Measurement and correlation of liquid - Liquid equilibria of three imidazolium ionic liquids with acetone and cyclohexane. Journal of Molecular Liquids, 2020, 298, 111947.	4.9	16
144	Comprehensive 3E analysis and multi-objective optimization of a novel process for CO2 capture and separation process from syngas. Journal of Cleaner Production, 2020, 274, 122871.	9.3	16

#	Article	IF	CITATIONS
145	Liquid–liquid equilibrium data for ternary aqueous mixtures containing 1-pentanol and 2-methyl-1-propanol at (298.15, 323.15, and 348.15)K. Fluid Phase Equilibria, 2013, 349, 31-36.	2.5	15
146	Application of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate to the removal of alcohol from mixtures with heptane. Fluid Phase Equilibria, 2017, 443, 44-49.	2.5	15
147	Separation of Azeotropes Hexane + Ethanol/1-Propanol by Ionic Liquid Extraction: Liquid–Liquid Phase Equilibrium Measurements and Thermodynamic Modeling. Journal of Chemical & Engineering Data, 2017, 62, 4296-4300.	1.9	15
148	Vapour-liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl) Tj ETQq0 0 0 rg	BT /Overlc 2.0	ock 10 Tf 50
149	Liquid–Liquid Equilibrium for Ternary Systems (Ethyl Acetate/Isopropyl Acetate + 2,2-Difluoroethanol) Tj ETQq1	1_0,78431 1.9	14 ggBT /Ove
150	Comparison of Deep Eutectic Solvents and Organic Solvent Effects on the Separation of Ternary Azeotropes by the Experimental Study and Molecular Simulation. ACS Sustainable Chemistry and Engineering, 2021, 9, 16424-16436.	6.7	15
151	Separation of isopropyl ether and acetone using ionic liquids based on quantum chemistry calculation and liquid–liquid equilibrium. Journal of Chemical Thermodynamics, 2022, 167, 106715.	2.0	15
152	Process design and optimization of the efficient production of butyl acrylate by reactive azeotropic distillation/pervaporation using different feed ratios. Journal of Cleaner Production, 2022, 344, 131102.	9.3	15
153	Process intensification and waste minimization for ibuprofen synthesis process. Journal of Cleaner Production, 2018, 194, 396-405.	9.3	14
154	Liquid–Liquid Equilibrium Measurements and Correlation for Ternary Systems (Butyl Acetate +) Tj ETQqO 0 0 rgl Engineering Data, 2019, 64, 3244-3249.	BT /Overlo 1.9	ck 10 Tf 50
155	Life Cycle Environmental Implications of Ionic-Liquid-Based Carbon Capture and Storage Processes and Its Alternative Improvement Cases. ACS Sustainable Chemistry and Engineering, 2020, 8, 18106-18113.	6.7	14
156	Liquid–Liquid-Phase Equilibrium for Quaternary Systems (<i>n</i> -Decane + 1-Tetradecene +) Tj ETQq0 0 0 rgB1 Diesel. Journal of Chemical & Engineering Data, 2021, 66, 2803-2811.	「 /Overlocł 1.9	R 10 Tf 50 30
157	Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. Journal of Environmental Chemical Engineering, 2021, 9, 105255.	6.7	14
158	Analysis and intensification of energy saving process for separation of azeotrope by ionic liquid extractive distillation based on molecular dynamics simulation. Separation and Purification Technology, 2021, 276, 119254.	7.9	14
159	Intermolecular Interaction and Extraction Explorations for Separation of High-Boiling Neutral Nitrogen Compounds Using Biodegradable Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15839-15848.	6.7	14
160	Liquid–Liquid Equilibrium for Ternary Mixture Water + (n-Propanol/Isopropanol) + Cyclohexanone at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2020, 65, 233-238.	1.9	13
161	Separation of isopropanol from its aqueous solution with deep eutectic solvents: liquid–liquid equilibrium measurement and thermodynamic modeling. Brazilian Journal of Chemical Engineering, 2020, 37, 569-576.	1.3	13
162	Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Science China Chemistry, 2021, 64, 1854-1874.	8.2	13

#	Article	IF	CITATIONS
163	Phase behavior and extraction mechanism of methanol-n-hexane separation using choline-based deep eutectic solvent. Journal of Molecular Liquids, 2022, 345, 118204.	4.9	13
164	Vapour-liquid equilibrium measurements and extractive distillation process design for separation of azeotropic mixture (dimethyl carbonate + ethanol). Journal of Chemical Thermodynamics, 2019, 133, 10-18.	2.0	12
165	Control comparison of extractive distillation with two different solvents for separating acetone and tetrahydrofuran. Chemical Engineering Research and Design, 2019, 125, 16-30.	5.6	12
166	Process Design and Comprehensive Analysis of the Ethanol Amination Process to Improve Acetonitrile Production. Industrial & Engineering Chemistry Research, 2020, 59, 5047-5055.	3.7	12
167	Dynamic control and performance comparison of conventional and dividing wall extractive distillation for benzene / isopropanol / water separation. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 73-86.	5.3	12
168	Multiscale evaluation of the efficiently separation of phenols using a designed cationic functionalized ionic liquid based on BrĄ̃,nsted/Lewis coordination. Journal of Molecular Liquids, 2022, 345, 117901.	4.9	12
169	Process design and intensification for the clean separation of ternary multi-azeotropes system via special distillation coupled with reaction. Journal of Cleaner Production, 2021, 328, 129520.	9.3	12
170	Molecular mechanism and extraction explorations for separation of pyridine from coal pyrolysis model mixture using protic ionic liquid [Hnmp][HSO4]. Fuel, 2022, 309, 122130.	6.4	12
171	Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol. Chemical Engineering Research and Design, 2022, 158, 181-188.	5.6	12
172	Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process. Chinese Journal of Chemical Engineering, 2023, 54, 353-363.	3.5	12
173	Molecular dynamics-assisted process design and multi-objective optimization for efficient production of N-butyl acetate by reactive-extractive distillation/pervaporation. Separation and Purification Technology, 2022, 296, 121427.	7.9	12
174	Effect of thermodynamic parameters on prediction of phase behavior and process design of extractive distillation. Chinese Journal of Chemical Engineering, 2018, 26, 993-1002.	3.5	11
175	Thermal coupled extractive distillation sequences with three entrainers for the separation of azeotrope isopropyl alcohol + diisopropyl ether. Journal of Chemical Technology and Biotechnology, 2020, 95, 1590-1603.	3.2	11
176	Application of green solvent to separate the minimum boiling point azeotrope based on molecular structure prediction and experimental verification. Separation and Purification Technology, 2020, 240, 116601.	7.9	11
177	Energy efficient and environmentally friendly pervaporation-distillation hybrid process for ternary azeotrope purification. Computers and Chemical Engineering, 2021, 147, 107236.	3.8	11
178	Performance of functionalized ionic liquid with double chemical sites for separating phenolic compounds: mechanism and liquid-liquid behavior studies. Journal of Environmental Chemical Engineering, 2021, 9, 106790.	6.7	11
179	Liquid-liquid equilibrium measurement and thermodynamics modeling for the systems waterÂ+ thioglycolic acidÂ+ isopropyl ether/methyl tert-butyl ether at 298.15 and 308.15ÂK. Fluid Phase Equilibria, 2018, 476, 126-130.	2.5	10
180	Dynamics of hybrid processes with mixed solvent for recovering propylene glycol methyl ether from wastewater with different control structures. Separation and Purification Technology, 2019, 229, 115815.	7.9	10

#	Article	IF	CITATIONS
181	Exploration of a heat-integrated pressure-swing distillation process with a varied-diameter column for binary azeotrope separation. Chemical Engineering Communications, 2019, 206, 1689-1705.	2.6	10
182	Exploration of the effects of pressure on the controllability of extractive distillation for separating pressure-sensitive azeotropes. Separation and Purification Technology, 2019, 227, 115681.	7.9	10
183	Isobaric Vapor–Liquid Equilibrium of Binary Systems (Isopropyl Acetate/Isopropyl Alcohol + Dibutyl) Tj ETQq1 I	0.784314	• rgBT /Overld
184	Dynamic control analysis of interconnected pressure-swing distillation process with and without heat integration for separating azeotrope. Chinese Journal of Chemical Engineering, 2021, 29, 67-76.	3.5	10
185	Extraction performance evaluation and theoretical analysis of removal of phenol from oil mixture using a dualâ€functionalized ionic liquid: 1â€hydroxyethylâ€3â€methylimidazolium propionate. Journal of Chemical Technology and Biotechnology, 2021, 96, 1947-1953.	3.2	10
186	Explorations of Liquid–Liquid Phase Equilibrium for the Mixture (Isopropanol + Water) with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2192-2199.	1.9	10
187	Isobaric Vapor–Liquid Equilibrium of Binary Systems of 1-Pentanol + Butyl Butyrate, 1-Pentanol + <i>N</i> -Formylmorpholine, and <i>p</i> -Xylene + Butyl Butyrate at 101.3 kPa. Journal of Chemical & Engineering Data, 2021, 66, 2874-2881.	1.9	10
188	Control of the azeotropic distillation process for separation of acetonitrile and water with and without heat integration. Chemical Engineering and Processing: Process Intensification, 2021, 165, 108451.	3.6	10
189	Molecular interaction mechanism and performance evaluation in the liquid-liquid extraction process of ionic liquid-heptane-tertiary butanol based on molecular dynamics. Journal of Molecular Liquids, 2021, 340, 116837.	4.9	10
190	Design and optimization of reactive dividing-wall extractive distillation process for dimethyl carbonate synthesis based on quantum chemistry and molecular dynamics calculation. Separation and Purification Technology, 2021, 273, 118978.	7.9	10
191	Liquid-liquid phase behavior for waterÂ+Â2,2-difluoroethanol with three imidazole-based ionic liquids. Journal of Molecular Liquids, 2022, 345, 117836.	4.9	10
192	Liquid-liquid equilibria for separation of benzothiophene from model fuel oil: Solvent screening and thermodynamic modeling. Journal of Chemical Thermodynamics, 2022, 167, 106693.	2.0	10
193	Carbon footprint and water footprint analysis of generating synthetic natural gas from biomass. Renewable Energy, 2022, 186, 780-789.	8.9	10
194	Economic effect of an efficient and environmentally friendly extractive distillation/pervaporation process on the separation of ternary azeotropes with different compositions. Journal of Cleaner Production, 2022, 346, 131179.	9.3	10
195	Separation of the Azeotropic Mixture Methanol and Toluene Using Extractive Distillation: Entrainer Determination, Vapor–Liquid Equilibrium Measurement, and Modeling. ACS Omega, 2021, 6, 34736-34743.	3.5	10
196	Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium for Binary Systems of Allyl Alcohol with Isobutyl Acetate, Butyl Acetate, and Butyl Propionate at 101.3 kPa. Journal of Chemical & Engineering Data, 2018, 63, 845-852.	1.9	9
197	Liquid–Liquid Equilibrium Data for the Systems <i>n</i> -Propyl Acetate or Isopropyl Acetate + <i>n</i> -Propanol or Isopropyl Alcohol + IL at 298.15 and 318.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 0, , .	1.9	9
198	Sustainability Analysis for the Wastewater Treatment Technical Route for Coal-to-Synthetic Natural Gas Industry through Zero Liquid Discharge Versus Standard Liquid Discharge. ACS Sustainable Chemistry and Engineering, 2020, 8, 8425-8435.	6.7	9

#	Article	IF	CITATIONS
199	Efficient extraction and theoretical insights for separating <i>o</i> â€; <i>m</i> â€; and <i>p</i> â€cresol from model coal tar by an ionic liquid [<scp>Emim</scp>][<scp>DCA</scp>]. Canadian Journal of Chemical Engineering, 2022, 100, .	1.7	9
200	Extraction of allyl alcohol from its aqueous solution using two different ionic liquids: Intermolecular interaction and liquid-liquid phase equilibrium explorations. Journal of Molecular Liquids, 2021, 336, 116875.	4.9	9
201	Exploration of gradient energy-saving separation processes for ethylene glycol mixtures based on energy, exergy, environment, and economic analyses. Separation and Purification Technology, 2021, 279, 119787.	7.9	9
202	Economic, environmental, and exergy analysis of an efficient separation process for recovering low-carbon alcohol from wastewater. Journal of Cleaner Production, 2022, 365, 132733.	9.3	9
203	Liquid–Liquid Equilibrium for the Ternary System 2-Methyl-2-propanol + 1-Pentanol + Water at <i>T</i> = (303.15, 328.15, and 353.15) K. Journal of Chemical & Engineering Data, 2013, 58, 2254-2259.	1.9	8
204	Controllability of separate heat pump distillation for separating isopropanol-chlorobenzene mixture. Korean Journal of Chemical Engineering, 2017, 34, 866-875.	2.7	8
205	Phase Behavior and Thermodynamic Model Parameters in Simulations of Extractive Distillation for Azeotrope Separation. Scientific Reports, 2017, 7, 9497.	3.3	8
206	Dynamic Control of Hybrid Processes with Liquid–Liquid Extraction for Propylene Glycol Methyl Ether Dehydration. Industrial & Engineering Chemistry Research, 2018, 57, 13811-13820.	3.7	8
207	Liquid–Liquid Equilibrium for Ternary Systems of <i>N</i> -Methylformamide + Pyrrole/Indole + Alkanes at 298.15 K: Phase Equilibrium Measurement and Correlation. Journal of Chemical & Engineering Data, 2019, 64, 3085-3091.	1.9	8
208	Economic, Thermodynamic, and Environmental Analysis and Comparison of the Synthesis Process of Butyl Acetate. Industrial & Engineering Chemistry Research, 2020, 59, 21869-21881.	3.7	8
209	Synergistic flame retardancy of tris(1â€methoxyâ€2,2,6,6â€tetramethylâ€piperidinâ€4â€yl)phosphite and tris(2,4,6â€tribromophenoxy)â€1,3,5â€triazine/Sb 2 O 3 in highâ€mpact polystyrene. Fire and Materials, 2020, 4 573-584.	142.0	8
210	Investigation of the flow characteristics of liquid–liquid two-phase mixing in an agitator equipped with a "V-shaped―horizontal baffle. Environment, Development and Sustainability, 2021, 23, 2298-2313.	5.0	8
211	Dynamic control of heat pump assisted extractive distillation process for separation of ethyl acetate/isopropanol/water mixture. Journal of Chemical Technology and Biotechnology, 2021, 96, 2368-2381.	3.2	8
212	Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat. Energy, 2022, 243, 122985.	8.8	8
213	Molecular mechanism and extraction performance evaluation of diethylene glycol-based DES for extraction desulfurization process of fuel oil. Journal of Molecular Liquids, 2022, 353, 118785.	4.9	8
214	Molecular mechanism, liquid–liquid equilibrium and process design of separating octane-n-butanol system by ionic liquids. Journal of Molecular Liquids, 2022, 355, 118974.	4.9	8
215	Isobaric Vapor–Liquid Phase Equilibrium Measurements, Correlation, and Prediction for Separation of the Mixtures of Cyclohexanone and Alcohols. Journal of Chemical & Engineering Data, 2018, 63, 2038-2045.	1.9	7
216	Measurement and Correlation of Vapor–Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 5210-5217.	1.9	7

#	Article	IF	CITATIONS
217	Vapor–Liquid Equilibrium for Binary of 1-Butanol + <i>N</i> , <i>N</i> -Dimethylacetamide and Methyl Isobutyl Ketone + <i>N</i> , <i>N</i> -Dimethylacetamide at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 4142-4147.	1.9	7
218	Flash/distillation for separating 2-pentanone/4-heptanone/water azeotropic mixture based equilibrium data and process design. Separation and Purification Technology, 2020, 242, 116790.	7.9	7
219	Isobaric Vapor–Liquid Equilibrium Measurements and Calculations Using Nontraditional Models for the Association Systems of Ethyl Acetate + 2-Ethylhexanoic Acid and Propyl Acetate + 2-Ethylhexanoic Acid at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2020, 65, 3482-3489.	1.9	7
220	Theoretical assessment of ketone ammoximation production using thermodynamic, techno-economic, and life cycle environmental analyses. Journal of Cleaner Production, 2020, 264, 121557.	9.3	7
221	Multi-dimensional analysis of turbulence models for immiscible liquid-liquid mixing in stirred tank based on numerical simulation. Separation Science and Technology, 2021, 56, 411-424.	2.5	7
222	Mechanism analysis and sustainability evaluation of imidazole ionic liquid extraction based on molecular dynamics. Journal of Molecular Liquids, 2021, 323, 115066.	4.9	7
223	Double-column batch stripper process based on heterogeneous property and control strategy for the efficient separation of a ternary mixture containing two minimum boiling azeotropes. Chemical Engineering Research and Design, 2021, 148, 1123-1132.	5.6	7
224	Application of Imidazolium-based polyionic liquids to separate the 1,3,5-Trioxane-Water/Ethanol-Water system based on experimental verification and molecular mechanism analysis. Journal of Molecular Liquids, 2022, 348, 118079.	4.9	7
225	Liquid-liquid extraction and mechanism exploration for separation of mixture 2,2,3,3-Tetrafluoro-1-propanol and water using pyridine-based ionic liquids. Journal of Molecular Liquids, 2022, 360, 119468.	4.9	7
226	Comparative study on organic solvents and green solvents in separation of aromatic hydrocarbons/low-carbon alcohols azeotrope by structure–activity relationship. Separation and Purification Technology, 2022, 297, 121498.	7.9	7
227	Liquid-liquid extraction and mechanism analysis of extracting fuel additive isopropanol from mixture with choline-based deep eutectic solvents as efficient extractants. Fuel, 2022, 326, 125048.	6.4	7
228	Sustainable separation of ternary azeotropic mixtures based on enhanced extractive distillation/pervaporation structure and multi-objective optimization. Separation and Purification Technology, 2022, 298, 121685.	7.9	7
229	Ternary Liquid–Liquid Equilibrium of Toluene + Dimethyl Carbonate + ILs at 298.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2019, 64, 3598-3605.	1.9	6
230	Ternary liquid-liquid equilibrium of methanol + isopropyl acetate/methyl methacrylate + 1-methylmidazole hydrogen sulfate at different temperatures and 1 atm. Journal of Molecular Liquids, 2019, 283, 515-521.	4.9	6
231	Isobaric Vapor–Liquid Phase Equilibrium Measurements for Allyl Alcohol with Chloroform, Ethyl Acetate, and Methyl Propionate at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 682-687.	1.9	6
232	Energyâ€Efficient Process with a Decanter to Separate Tolueneâ€Methanolâ€Water Ternary Azeotropic Mixtures. Chemical Engineering and Technology, 2020, 43, 1276-1284.	1.5	6
233	Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope. Chinese Journal of Chemical Engineering, 2022, 46, 271-279.	3.5	6
234	Process design, evaluation and control for separation of 2,2,3,3â€tetrafluoroâ€1â€propanol and water by extractive distillation using ionic liquid 1â€ethylâ€3â€methylimidazolium acetate. Journal of Chemical Technology and Biotechnology, 2021, 96, 3175-3184.	3.2	6

#	Article	IF	CITATIONS
235	Sequential two-column batch distillation processes for separation of ternary mixture containing three binary minimum boiling point homoazeotropes. Separation and Purification Technology, 2021, 270, 118826.	7.9	6
236	Quantum chemistry of solvent selectivity and economic, exergy and environment analysis of extractive distillation process for separating binary azeotropic mixture. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129, 180-188.	5.3	6
237	Separation of indole by designed ionic liquids with dual functional chemical sites: Mechanism exploration and experimental validation. Journal of Environmental Chemical Engineering, 2021, 9, 105971.	6.7	6
238	Energy-saving and environmentally friendly pervaporation-distillation hybrid process for alcohol and ester recovery from wastewater containing three binary azeotropes. Separation and Purification Technology, 2022, 281, 119889.	7.9	6
239	QSPR modeling of azeotropic temperatures and compositions for binary azeotropes containing lower alcohols using a genetic function approximation. Chinese Journal of Chemical Engineering, 2019, 27, 835-844.	3.5	5
240	Optimization of decanter temperature in separating partially miscible homoazeotrope to reduce cost and energy consumption. Journal of Chemical Technology and Biotechnology, 2019, 94, 1998-2008.	3.2	5
241	Isobaric Vapor–Liquid Equilibrium Measurements for Separation of Azeotrope (Methanol + Methyl) Tj ETQq1 1 0	.784314 1.9	rgBT /Overlo
242	Vapor–Liquid Equilibrium Study of Binary Mixtures of Chloroform, 2-Ethylhexanoic Acid, and Propylene Glycol Methyl Ether at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2020, 65, 2271-2279.	1.9	5
243	Isobaric vapour-liquid equilibrium for binary and ternary systems of isopropyl acetate, isopropyl alcohol, acetic acid and water at 101.3ÂkPa. Journal of Chemical Thermodynamics, 2022, 165, 106662.	2.0	5
244	Comparative water footprint assessment of fuel cell electric vehicles and compressed natural gas vehicles. Science of the Total Environment, 2022, 830, 154820.	8.0	5
245	Thermodynamic analysis and process optimization of organosilicon distillation systems. Energy, 2022, 252, 124006.	8.8	5
246	Economic optimization and dynamic control of pressureâ€swing distillation for separating the ternary azeotrope of butanone/ <i>n</i> â€heptane/isopropanol. Journal of Chemical Technology and Biotechnology, 2022, 97, 2557-2571.	3.2	5
247	Liquid-liquid equilibrium data for ternary mixtures (waterÂ+ÂisopropanolÂ+Â1-pentanol/1-hexanol/1-heptanol) at 298.15ÂK: Measurement, correlation and prediction. Journal of Chemical Thermodynamics, 2022, 174, 106871.	2.0	5
248	OPERATIONAL DESIGN AND IMPROVEMENT OF CONVENTIONAL BATCH DISTILLATION AND MIDDLE-VESSEL BATCH DISTILLATION. Brazilian Journal of Chemical Engineering, 2018, 35, 769-784.	1.3	4
249	Entrainers selection and vapour-liquid equilibrium measurements for isopropyl acetate with propyl propionate, butyl propionate, and butyl butyrate at 101.3ÂkPa. Journal of Chemical Thermodynamics, 2020, 146, 106107.	2.0	4
250	Isobaric Vapor–Liquid Equilibrium of Isoamyl Alcohol, Cyclohexane, <i>n</i> -Hexane, and the <i>n</i> -Heptane + Isoamyl Butyrate Binary System at 101.3 kPa. Journal of Chemical & Engineering Data, 2021, 66, 4476-4483.	1.9	4
251	Molecular simulation and liquid–liquid equilibrium for the separation of n-heptane and dimethyl carbonate by ionic liquids. Fluid Phase Equilibria, 2022, 552, 113291.	2.5	4
252	Comparative evaluation of <scp>liquid–liquid</scp> equilibria for extraction of 2,2,3, <scp>3â€ŧetrafluoroâ€1â€propanol</scp> from water by a <scp>ZIFâ€8â€porous</scp> ionic liquid. Journal of Chemical Technology and Biotechnology, 2022, 97, 933-942.	3.2	4

#	Article	IF	CITATIONS
253	Dynamic control design and performance evaluation of extractive distillation for <scp><i>N</i></scp> â€hexane/acetone/chloroform. Journal of Chemical Technology and Biotechnology, 2022, 97, 2114-2127.	3.2	4
254	Corrosion rate of carbon steel and aluminum alloy in sulfuric acid and hydrochloric acid solutions accelerated by microwave heating. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 483-493.	1.5	3
255	Quantitative structure property relationship for relative volatility of isopropanol and water mixture. Separation Science and Technology, 2020, 55, 3252-3259.	2.5	3
256	The mechanism explosion of separating binary azeotropic system with intermediate-boiling-point solvent based on vapor–liquid equilibrium experiment, quantum chemical calculation and molecular dynamics simulation. Journal of Chemical Thermodynamics, 2022, 168, 106730.	2.0	1
257	Reply to "Comments on â€~Isobaric Vapor + Liquid Equilibrium Measurements and Calculations for Using Nontraditional Models for the Association Systems of Ethyl Acetate +2-Ethylhexanoic Acid and Propyl Acetate +2-Ethylhexanoic Acid at Atmospheric Pressure'″. Journal of Chemical & Engineering Data, 2021, 66, 852-857.	1.9	0
258	MEASUREMENTS AND THERMODYNAMIC MODELING OF VAPOR-LIQUID EQUILIBRIA FOR BINARY SYSTEMS OF ISOPROPYL CHLOROACETATE WITH CYCLOHEXANE, ISOPROPANOL AND BENZENE AT 101.3 kPa. Brazilian Journal of Chemical Engineering, 2019, 36, 1717-1725.	1.3	0
259	Measurement and Thermodynamic Modeling of Liquid–Liquid Equilibrium Data for Ternary Systems (Water + Formaldehyde + Methyl Isobutyl Ketone/Cyclohexanone) at Different Temperatures. Journal of Chemical & Engineering Data, 0, , .	1.9	0