
Philippe Bastin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restriction of intraflagellar transport to some microtubule doublets: An opportunity for cilia diversification?. BioEssays, 2022, 44, .	1.2	5
2	Ultrastructural Changes of the Mitochondrion During the Life Cycle of <i>Trypanosomabrucei</i> . Journal of Eukaryotic Microbiology, 2021, 68, e12846.	0.8	15
3	Redistribution of <scp>FLAgellar</scp> Member 8 during the trypanosome life cycle: Consequences for cell fate prediction. Cellular Microbiology, 2021, 23, e13347.	1.1	15
4	The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands. PLoS Pathogens, 2021, 17, e1009904.	2.1	29
5	CEP164C regulates flagellum length in stable flagella. Journal of Cell Biology, 2021, 220, .	2.3	10
6	Intraflagellar transport during assembly of flagella of different length in <i>Trypanosoma brucei</i> isolated from tsetse flies. Journal of Cell Science, 2020, 133, .	1.2	7
7	Dealing with several flagella in the same cell. Cellular Microbiology, 2020, 22, e13162.	1.1	12
8	Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly. Parasites and Vectors, 2020, 13, 169.	1.0	9
9	IFT25 is required for the construction of the trypanosome flagellum. Journal of Cell Science, 2019, 132, .	1.2	8
10	Indirubin Analogues Inhibit <i>Trypanosoma brucei</i> Glycogen Synthase Kinase 3 Short and <i>T. brucei</i> Growth. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	5
11	Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO Journal, 2019, 38, .	3.5	38
12	STEM tomography analysis of the trypanosome transition zone. Journal of Structural Biology, 2018, 202, 51-60.	1.3	22
13	Flagellar incorporation of proteins follows at least two different routes in trypanosomes. Biology of the Cell, 2018, 110, 33-47.	0.7	10
14	A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Current Biology, 2018, 28, 3802-3814.e3.	1.8	34
15	Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. Journal of Cell Biology, 2018, 217, 4284-4297.	2.3	41
16	Biallelic Mutations in LRRC56, Encoding a Protein Associated with Intraflagellar Transport, Cause Mucociliary Clearance and Laterality Defects. American Journal of Human Genetics, 2018, 103, 727-739.	2.6	49
17	Preparation and Observation of Thick Biological Samples by Scanning Transmission Electron Tomography. Journal of Visualized Experiments, 2017, , .	0.2	4
18	Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not length. Journal of Cell Science, 2016, 129, 3026-41.	1.2	39

#	Article	IF	CITATIONS
19	Scanning transmission electron microscopy through-focal tilt-series on biological specimens. Micron, 2015, 77, 9-15.	1.1	13
20	Using steerable wavelets and minimal paths to reconstruct automatically filaments in fluorescence imaging. , 2015, , .		1
21	Social motility in African trypanosomes: fact or model?. Trends in Parasitology, 2015, 31, 37-38.	1.5	5
22	The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies. Cilia, 2015, 4, 5.	1.8	8
23	Imaging intraflagellar transport in trypanosomes. Methods in Cell Biology, 2015, 127, 487-508.	0.5	5
24	Flagellar membranes are rich in raft-forming phospholipids. Biology Open, 2015, 4, 1143-1153.	0.6	27
25	<i>IFT81</i> , encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype. Journal of Medical Genetics, 2015, 52, 657-665.	1.5	32
26	The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies. PLoS ONE, 2015, 10, e0133676.	1.1	25
27	Flagellar adhesion in <i>Trypanosoma brucei</i> relies on interactions between different skeletal structures present in the flagellum and in the cell body. Journal of Cell Science, 2014, 127, 204-15.	1.2	39
28	Generation of a Nanobody Targeting the Paraflagellar Rod Protein of Trypanosomes. PLoS ONE, 2014, 9, e115893.	1.1	26
29	A statistical analysis of spatial clustering along cell filaments using Ripley's K function. , 2014, , .		6
30	Forward motility is essential for trypanosome infection in the tsetse fly. Cellular Microbiology, 2014, 16, 425-433.	1.1	56
31	The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions. Molecular Biology of the Cell, 2014, 25, 2620-2633.	0.9	40
32	The <scp><i>L</i></scp> <i>eishmania donovani</i> chaperone cyclophilin 40 is essential for intracellular infection independent of its stageâ€specific phosphorylation status. Molecular Microbiology, 2014, 93, 80-97.	1.2	21
33	Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics. Molecular and Cellular Proteomics, 2014, 13, 1769-1786.	2.5	114
34	The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. ELife, 2014, 3, e02419.	2.8	61
35	Boarder control on the IFT train. ELife, 2014, 3, e02531.	2.8	1
36	Intraflagellar transport proteins cycle between the flagellum and its base. Journal of Cell Science, 2013, 126, 327-338.	1.2	109

#	Article	IF	CITATIONS
37	Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81. Science, 2013, 341, 1009-1012.	6.0	271
38	Trypanosoma brucei FKBP12 Differentially Controls Motility and Cytokinesis in Procyclic and Bloodstream Forms. Eukaryotic Cell, 2013, 12, 168-181.	3.4	9
39	Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. Cilia, 2013, 2, 16.	1.8	34
40	Apoptotic Marker Expression in the Absence of Cell Death in Staurosporine-Treated Leishmania donovani. Antimicrobial Agents and Chemotherapy, 2013, 57, 1252-1261.	1.4	25
41	More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Frontiers in Cellular and Infection Microbiology, 2013, 3, 71.	1.8	30
42	A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development (Cambridge), 2012, 139, 1842-1850.	1.2	84
43	NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions. PLoS Biology, 2012, 10, e1001287.	2.6	105
44	1001 model organisms to study cilia and flagella. Biology of the Cell, 2011, 103, 109-130.	0.7	125
45	Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cellular Microbiology, 2011, 13, 705-716.	1.1	59
46	Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cellular Microbiology, 2011, 13, 978-991.	1.1	83
47	The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biology of the Cell, 2011, 103, 131-144.	0.7	96
48	ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Molecular Biology of the Cell, 2011, 22, 4205-4219.	0.9	104
49	Curvelet analysis of kymograph for tracking bi-directional particles in fluorescence microscopy images. , 2010, , .		24
50	The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. Journal of Cell Science, 2010, 123, 1785-1795.	1.2	244
51	Cyclosporin A Treatment of Leishmania donovani Reveals Stage-Specific Functions of Cyclophilins in Parasite Proliferation and Viability. PLoS Neglected Tropical Diseases, 2010, 4, e729.	1.3	34
52	The peculiarities of flagella in parasitic protozoa. Current Opinion in Microbiology, 2010, 13, 450-452.	2.3	6
53	Flagellum Structure and Function in Trypanosomes. Microbiology Monographs, 2010, , 63-86.	0.3	8
54	A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. Journal of Cell Science, 2009, 122, 834-841.	1.2	61

#	Article	IF	CITATIONS
55	Kinesin 9 family members perform separate functions in the trypanosome flagellum. Journal of Cell Biology, 2009, 187, 615-622.	2.3	82
56	Tools for Analyzing Intraflagellar Transport in Trypanosomes. Methods in Cell Biology, 2009, 93, 59-80.	0.5	13
57	The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signalling and development?. Cellular Microbiology, 2009, 11, 710-718.	1.1	67
58	Loss-of-Function Mutations in the Human Ortholog of Chlamydomonas reinhardtii ODA7 Disrupt Dynein Arm Assembly and Cause Primary Ciliary Dyskinesia. American Journal of Human Genetics, 2009, 85, 890-896.	2.6	145
59	Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. Journal of Cell Science, 2008, 121, 3704-3716.	1.2	59
60	Intraflagellar Transport and Functional Analysis of Genes Required for Flagellum Formation in Trypanosomes. Molecular Biology of the Cell, 2008, 19, 929-944.	0.9	166
61	Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei. PLoS ONE, 2007, 2, e437.	1.1	75
62	The Argonaute protein TbAGO1 contributes to large and mini-chromosome segregation and is required for control of RIME retroposons and RHS pseudogene-associated transcripts. Molecular and Biochemical Parasitology, 2007, 156, 144-153.	0.5	17
63	Conserved and specific functions of axoneme components in trypanosome motility. Journal of Cell Science, 2006, 119, 3443-3455.	1.2	150
64	Functional complementation of RNA interference mutants in trypanosomes. BMC Biotechnology, 2005, 5, 6.	1.7	18
65	The Flagellum of Trypanosomes. International Review of Cytology, 2005, 244, 227-285.	6.2	63
66	Efficiency and specificity of RNA interference generated by intra- and intermolecular double stranded RNA in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2003, 129, 11-21.	0.5	55
67	TbAGO1, an argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biology, 2003, 1, 2.	1.7	74
68	Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO Journal, 2003, 22, 5336-5346.	3.5	220
69	Le flagelle du trypanosome : de la mobilité à la morphogenèse cellulaire. Société De Biologie Journal, 2003, 197, 379-387.	0.3	2
70	Genetic interference in protozoa. Research in Microbiology, 2001, 152, 123-129.	1.0	18
71	Inside and outside of the trypanosome flagellum:a multifunctional organelle. Microbes and Infection, 2000, 2, 1865-1874.	1.0	59
72	Assembly and Function of Complex Flagellar Structures Illustrated by the Paraflagellar Rod of Trypanosomes. Protist, 1999, 150, 113-123.	0.6	27

#	Article	IF	CITATIONS
73	Flagellar Morphogenesis: Protein Targeting and Assembly in the Paraflagellar Rod of Trypanosomes. Molecular and Cellular Biology, 1999, 19, 8191-8200.	1.1	95
74	Paraflagellar rod is vital for trypanosome motility. Nature, 1998, 391, 548-548.	13.7	175
75	A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Molecular and Biochemical Parasitology, 1997, 90, 95-109.	0.5	100
76	The paraflagellar rod of kinetoplastida: Solved and unsolved questions. Parasitology Today, 1996, 12, 302-307.	3.1	76
77	An Mr 145000 low-density lipoprotein (LDL)-binding protein is conserved throughout the Kinetoplastida order. Molecular and Biochemical Parasitology, 1996, 76, 43-56.	0.5	34
78	A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1996, 77, 235-239.	0.5	287
79	Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1995, 69, 29-40.	0.5	44
80	Identification of a specific epitope on the extracellular domain of the LDL-receptor of Trypanosoma brucei brucei. Molecular and Biochemical Parasitology, 1994, 63, 193-202.	0.5	14
81	Receptor-Mediated Endocytosis in Trypanosoma Brucei. , 1992, , 475-480.		1
82	Control of Flagellum Length by a Grow-and-Lock Model. SSRN Electronic Journal, 0, , .	0.4	0