Hee-Gyeong Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852671/publications.pdf Version: 2024-02-01

HEE-GVEONC Y

#	Article	IF	CITATIONS
1	3D Bioprinting of an In Vitro Model of a Biomimetic Urinary Bladder with a Contract-Release System. Micromachines, 2022, 13, 277.	1.4	9
2	3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks. Polymers, 2021, 13, 366.	2.0	45
3	Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduction and Targeted Therapy, 2021, 6, 177.	7.1	55
4	Introduction to bioprinting of <i>in vitro</i> cancer models. Essays in Biochemistry, 2021, 65, 603-610.	2.1	4
5	Promoting Longâ€Term Cultivation of Motor Neurons for 3D Neuromuscular Junction Formation of 3D In Vitro Using Centralâ€Nervousâ€Tissueâ€Derived Bioink. Advanced Healthcare Materials, 2021, 10, e2100581.	3.9	14
6	Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury. Biofabrication, 2021, 13, 044110.	3.7	24
7	3D Cell-Printed Hypoxic Cancer-on-a-Chip for Recapitulating Pathologic Progression of Solid Cancer. Journal of Visualized Experiments, 2021, , .	0.2	6
8	Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. Micromachines, 2020, 11, 855.	1.4	10
9	Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty. Journal of Tissue Engineering, 2019, 10, 204173141882479.	2.3	59
10	A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nature Biomedical Engineering, 2019, 3, 509-519.	11.6	403
11	A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials, 2019, 206, 160-169.	5.7	213
12	Effect of an oxygenâ€generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters. Xenotransplantation, 2018, 25, e12378.	1.6	26
13	Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation. Journal of Materials Chemistry B, 2018, 6, 5530-5539.	2.9	28
14	A cell-laden hybrid fiber/hydrogel composite for ligament regeneration with improved cell delivery and infiltration. Biomedical Materials (Bristol), 2017, 12, 055010.	1.7	20
15	3D Printing of Organs-On-Chips. Bioengineering, 2017, 4, 10.	1.6	140
16	3D Cell Printed Tissue Analogues: A New Platform for Theranostics. Theranostics, 2017, 7, 3118-3137.	4.6	99
17	Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model. Oncotarget, 2017, 8, 40140-40151.	0.8	18
18	Effects of electromagnetic field frequencies on chondrocytes in 3D cellâ€printed composite constructs. Journal of Biomedical Materials Research - Part A, 2016, 104, 1797-1804.	2.1	17

HEE-GYEONG YI

#	Article	IF	CITATIONS
19	3D Printed Tissue Models: Present and Future. ACS Biomaterials Science and Engineering, 2016, 2, 1722-1731.	2.6	119
20	3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscleâ€Derived Bioink. Advanced Healthcare Materials, 2016, 5, 2636-2645.	3.9	227
21	A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. Journal of Controlled Release, 2016, 238, 231-241.	4.8	192
22	Electromagnetically controllable osteoclast activity. Bone, 2014, 62, 99-107.	1.4	29
23	Evaluation of the Effective Diffusivity of a Freeform Fabricated Scaffold Using Computational Simulation. Journal of Biomechanical Engineering, 2013, 135, 84501.	0.6	29