
Xiaoqiang Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852293/publications.pdf Version: 2024-02-01

XIAOOIANC SHAN

#	Article	IF	CITATIONS
1	Revitalizing Iron Redox by Anion-Insertion-Assisted Ferro- and Ferri-Hydroxides Conversion at Low Alkalinity. Journal of the American Chemical Society, 2022, 144, 11938-11942.	13.7	2
2	Dual-stage K ⁺ ion intercalation in V ₂ O ₅ -conductive polymer composites. Journal of Materials Chemistry A, 2021, 9, 15629-15636.	10.3	13
3	High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion–Intercalation of Vanadyl Ions. ACS Applied Materials & Interfaces, 2021, 13, 25993-26000.	8.0	20
4	Exemption of lattice collapse in Ni–MnO ₂ birnessite regulated by the structural water mobility. Journal of Materials Chemistry A, 2021, 9, 23459-23466.	10.3	12
5	Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54627-54636.	8.0	46
6	Framework Doping of Ni Enhances Pseudocapacitive Na-Ion Storage of (Ni)MnO ₂ Layered Birnessite. Chemistry of Materials, 2019, 31, 8774-8786.	6.7	51
7	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nature Communications, 2019, 10, 4975.	12.8	75
8	Biphase Cobalt–Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodiumâ€ i on Electrochemical Energy Storage. Advanced Functional Materials, 2018, 28, 1703266.	14.9	25
9	High purity Mn5O8 nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Frontiers in Energy, 2017, 11, 383-400.	2.3	19
10	Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7, 13370.	12.8	109