## **Romain Gautier**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852278/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds.<br>Nature Chemistry, 2015, 7, 308-316.                                                                                                                                     | 13.6 | 349       |
| 2  | Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Science Advances, 2019, 5, eaav0363.                                                                                                            | 10.3 | 153       |
| 3  | Lead Halide Postâ€Perovskiteâ€Type Chains for Highâ€Efficiency Whiteâ€Light Emission. Advanced Materials,<br>2019, 31, e1807383.                                                                                                                                            | 21.0 | 147       |
| 4  | Exciton Self-Trapping in Hybrid Lead Halides: Role of Halogen. Journal of the American Chemical Society, 2019, 141, 12619-12623.                                                                                                                                            | 13.7 | 126       |
| 5  | The Role of Polar, Lamdba (ĥ)-Shaped Building Units in Noncentrosymmetric Inorganic Structures.<br>Journal of the American Chemical Society, 2012, 134, 7679-7689.                                                                                                          | 13.7 | 123       |
| 6  | Structural Confinement toward Giant Enhancement of Red Emission in Mn <sup>2+</sup> â€Based<br>Phosphors. Advanced Functional Materials, 2018, 28, 1804150.                                                                                                                 | 14.9 | 122       |
| 7  | Two-Step Design of a Single-Doped White Phosphor with High Color Rendering. Journal of the<br>American Chemical Society, 2017, 139, 1436-1439.                                                                                                                              | 13.7 | 121       |
| 8  | Doped Lead Halide White Phosphors for Very High Efficiency and Ultraâ€High Color Rendering.<br>Angewandte Chemie - International Edition, 2020, 59, 2802-2807.                                                                                                              | 13.8 | 98        |
| 9  | Nonlinear Active Materials: An Illustration of Controllable Phase Matchability. Journal of the American Chemical Society, 2013, 135, 11942-11950.                                                                                                                           | 13.7 | 89        |
| 10 | Chemical Transformation of Lead Halide Perovskite into Insoluble, Less Cytotoxic, and Brightly<br>Luminescent CsPbBr <sub>3</sub> /CsPb <sub>2</sub> Br <sub>5</sub> Composite Nanocrystals for Cell<br>Imaging. ACS Applied Materials & Interfaces, 2019, 11, 24241-24246. | 8.0  | 81        |
| 11 | Synthesis and Photoluminescence Properties of<br>Ca <sub>2</sub> Ga <sub>2</sub> SiO <sub>7</sub> Eu <sup>3+</sup> Red Phosphors with an Intense<br><sup>5</sup> D <sub>0</sub> â†' <sup>7</sup> F <sub>4</sub> Transition. Inorganic Chemistry, 2016, 55,<br>9144-9146.    | 4.0  | 65        |
| 12 | On the Origin of the Differences in Structure Directing Properties of Polar Metal Oxyfluoride<br>[MO <sub><i>x</i></sub> F <sub>6–<i>x</i></sub> ] <sup>2–</sup> ( <i>x</i> = 1, 2) Building Units.<br>Inorganic Chemistry, 2015, 54, 1712-1719.                            | 4.0  | 44        |
| 13 | Syntheses of Two Vanadium Oxide–Fluoride Materials That Differ in Phase Matchability. Inorganic<br>Chemistry, 2015, 54, 765-772.                                                                                                                                            | 4.0  | 40        |
| 14 | Oxygen-Vacancy-Induced Midgap States Responsible for the Fluorescence and the Long-Lasting<br>Phosphorescence of the Inverse Spinel Mg(Mg,Sn)O <sub>4</sub> . Chemistry of Materials, 2017, 29,<br>1069-1075.                                                               | 6.7  | 36        |
| 15 | Orientational order of [VOF5]2â^' and [NbOF5]2â^' polar units in chains. Journal of Solid State<br>Chemistry, 2012, 195, 132-139.                                                                                                                                           | 2.9  | 35        |
| 16 | Optical activity from racemates. Nature Materials, 2016, 15, 591-592.                                                                                                                                                                                                       | 27.5 | 35        |
| 17 | CsCu <sub>5</sub> Se <sub>3</sub> : A Copper-Rich Ternary Chalcogenide Semiconductor with Nearly<br>Direct Band Gap for Photovoltaic Application. Chemistry of Materials, 2018, 30, 1121-1126.                                                                              | 6.7  | 30        |
| 18 | Spin Frustration from <i>cis</i> -Edge or -Corner Sharing Metal-Centered Octahedra. Journal of the<br>American Chemical Society, 2013, 135, 19268-19274.                                                                                                                    | 13.7 | 27        |

Romain Gautier

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Redox and phase behavior of Pd-substituted (La,Sr)CrO3 perovskite solid oxide fuel cell anodes. Solid<br>State Ionics, 2016, 296, 90-105.                                                          | 2.7  | 26        |
| 20 | Screening Approach for the Discovery of New Hybrid Perovskites with Efficient Photoemission.<br>Advanced Functional Materials, 2019, 29, 1806728.                                                  | 14.9 | 26        |
| 21 | A Chemical Route Towards Singleâ€Phase Materials with Controllable Photoluminescence. Angewandte<br>Chemie - International Edition, 2015, 54, 11501-11503.                                         | 13.8 | 25        |
| 22 | Kirkendall Effect vs Corrosion of Silver Nanocrystals by Atomic Oxygen: From Solid Metal Silver to<br>Nanoporous Silver Oxide. Journal of Physical Chemistry C, 2017, 121, 19497-19504.            | 3.1  | 22        |
| 23 | From Racemic Units to Polar Materials. Crystal Growth and Design, 2012, 12, 6267-6271.                                                                                                             | 3.0  | 21        |
| 24 | Preservation of Chirality and Polarity between Chiral and Polar Building Units in the Solid State.<br>Inorganic Chemistry, 2012, 51, 10613-10618.                                                  | 4.0  | 20        |
| 25 | From Solution to the Solid State: Control of Niobium Oxide–Fluoride<br>[NbO <sub><i>x</i></sub> F <sub><i>y</i></sub> ] <sup><i>n</i>â^²</sup> Species. Inorganic Chemistry,<br>2014, 53, 537-542. | 4.0  | 20        |
| 26 | Modulation of Defects in Semiconductors by Facile and Controllable Reduction: The Case of p-type<br>CuCrO <sub>2</sub> Nanoparticles. Inorganic Chemistry, 2016, 55, 7729-7733.                    | 4.0  | 20        |
| 27 | Doped Lead Halide White Phosphors for Very High Efficiency and Ultraâ€High Color Rendering.<br>Angewandte Chemie, 2020, 132, 2824-2829.                                                            | 2.0  | 19        |
| 28 | Specific Chemistry of the Anions: [TaOF <sub>5</sub> ] <sup>2–</sup> , [TaF <sub>6</sub> ] <sup>â^'</sup> , and [TaF <sub>7</sub> ] <sup>2–</sup> . Crystal Growth and Design, 2014, 14, 844-850.  | 3.0  | 18        |
| 29 | Alignment of Acentric Units in Infinite Chains: A "Lock and Key―Model. Crystal Growth and Design, 2013, 13, 4084-4091.                                                                             | 3.0  | 16        |
| 30 | DFT-assisted structure determination of α1- and α2-VOPO4: new insights into the understanding of the catalytic performances of vanadium phosphates. Dalton Transactions, 2013, 42, 8124.           | 3.3  | 16        |
| 31 | The dimeric [V2O2F8]4â~' anion: Structural characterization of a magnetic basic-building-unit. Journal of Solid State Chemistry, 2013, 200, 105-109.                                               | 2.9  | 15        |
| 32 | Thermochromic Luminescent Materials and Multi-Emission Bands in d10 Clusters. Scientific Reports, 2017, 7, 45537.                                                                                  | 3.3  | 15        |
| 33 | Tuning the Crystal Structure Dimensionality of Cobalt(II)/1,2,4-Triazole Complexes. Crystal Growth and Design, 2017, 17, 864-869.                                                                  | 3.0  | 14        |
| 34 | Hydrogen Bonding and Broad-Band Emission in Hybrid Zinc Halide Phosphors. Inorganic Chemistry,<br>2020, 59, 2626-2630.                                                                             | 4.0  | 14        |
| 35 | Machine Learning Guided Design of Single–Phase Hybrid Lead Halide White Phosphors. Advanced<br>Science, 2021, 8, e2101407                                                                          | 11.2 | 14        |
| 36 | Synthesis and Magnetic Properties of βâ€KVOF <sub>3</sub> . Zeitschrift Fur Anorganische Und Allgemeine<br>Chemie, 2014, 640, 1109-1114.                                                           | 1.2  | 13        |

Romain Gautier

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | VOPO4·H2O: A Stacking Faults Structure Studied by X-ray Powder Diffraction and DFT-D Calculations.<br>Inorganic Chemistry, 2011, 50, 4378-4383.                                      | 4.0  | 12        |
| 38 | Electron spin resonance in three spin-12dimer systems:VO(HPO4)â‹0.5H2O,KZn(H2O)(VO)2(PO4)2(H2PO4), andCsV2O5. Physical Review B, 2010, 81, .                                         | 3.2  | 11        |
| 39 | A p-Type Zinc-Based Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 6208-6213.                                                                                               | 4.0  | 9         |
| 40 | Packing of Helices: Is Chirality the Highest Crystallographic Symmetry?. Crystals, 2016, 6, 106.                                                                                     | 2.2  | 8         |
| 41 | Pillared sulfonate-based metal-organic framework as negative electrode for Li-ion batteries. Materials<br>Letters, 2019, 236, 73-76.                                                 | 2.6  | 8         |
| 42 | Cyclohexylammonium sulfanilate: A simple representative of the chiral materials containing only achiral building units. Materials Letters, 2019, 241, 6-9.                           | 2.6  | 7         |
| 43 | Role of specific distorted metal complexes in exciton self-trapping for hybrid metal halides. Chemical Communications, 2020, 56, 10139-10142.                                        | 4.1  | 7         |
| 44 | NMR study of the LiMnPO4·OH and MPO4·H2O (M=Mn, V) homeotypic phases and DFT calculations. Solid<br>State Nuclear Magnetic Resonance, 2012, 42, 42-50.                               | 2.3  | 6         |
| 45 | Fineâ€Tuning the Properties of Doped Multifunctional Materials by Controlled Reduction of Dopants.<br>Chemistry - A European Journal, 2017, 23, 2998-3001.                           | 3.3  | 6         |
| 46 | Tuning the oxidation states of dopants in Li2SrSiO4:Eu,Ce and control of the photoemission color.<br>Journal of Solid State Chemistry, 2020, 288, 121367.                            | 2.9  | 6         |
| 47 | Tuning the Oxidation States of Dopants: A Strategy for the Modulation of Material<br>Photoluminescence Properties. Chemistry - A European Journal, 2021, 27, 905-914.                | 3.3  | 6         |
| 48 | One pot-synthesis of the fourth category of dinuclear molybdenum(VI) oxalate series: Structure and study of thermal and redox properties. Inorganica Chimica Acta, 2019, 491, 84-92. | 2.4  | 5         |
| 49 | The crucial impact of cerium reduction on photoluminescence. Applied Materials Today, 2020, 20, 100643.                                                                              | 4.3  | 5         |
| 50 | Patterning of silver on the micro- and nano-scale by local oxidation using air plasma. Nano<br>Structures Nano Objects, 2019, 19, 100320.                                            | 3.5  | 4         |
| 51 | Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.<br>Nanoscale, 2016, 8, 17108-17112.                                                   | 5.6  | 3         |
| 52 | Stabilization of Î <sup>2</sup> -octamolybdate with large counterions. Journal of Molecular Structure, 2017, 1141, 698-702.                                                          | 3.6  | 3         |
| 53 | Machine learning identification of experimental conditions for the synthesis of single-phase white phosphors. Matter, 2021, 4, 3967-3976.                                            | 10.0 | 3         |
| 54 | A Chiral 3D Silver(I)-Benzenedithiolate Coordination Polymer exhibiting Photoemission and Non Linear<br>Optical Response. Chemical Communications, 0, , .                            | 4.1  | 3         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                      | IF    | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| 55 | Two Distinct Cu(II)–V(IV) Superexchange Interactions with Similar Bond Angles in a Triangular<br>"CuV <sub>2</sub> ―Fragment. Inorganic Chemistry, 2022, 61, 10234-10241.                                                                                                                                                                                    | 4.0   | 3            |
| 56 | Two caesium vanadium hydrogenphosphates with tunnelled structures:<br>Cs <sub>2</sub> V <sub>2</sub> O <sub>3</sub> (PO <sub>4</sub> )(HPO <sub>4</sub> ) and<br>Cs <sub>2</sub> [(VO) <sub>3</sub> (HPO <sub>4</sub> )(sub>4(H <sub>2</sub> O)]·H <sub>2</sub> O.<br>Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, i12-i15. | 0.4   | 2            |
| 57 | Influence of the cation size on the second harmonic generation response of chiral A(VO2)2(PO4)·3H2O<br>(A = K+, NH4+ and Rb+). CrystEngComm, 2014, 16, 10902-10906.                                                                                                                                                                                          | 2.6   | 2            |
| 58 | Structural and Spectroscopic Investigations of Two [Cu4X6]2– (X = Cl–, Br–) Clusters: A Joint<br>Theoretical and Experimental Work. Journal of Physical Chemistry A, 2018, 122, 4628-4634.                                                                                                                                                                   | 2.5   | 2            |
| 59 | Role of the organic counterions on the protonation of Strandberg-type phosphomolybdates.<br>Polyhedron, 2020, 191, 114795.                                                                                                                                                                                                                                   | 2.2   | 2            |
| 60 | Templating effect of <i>trans</i> -2,5-dimethylpiperazine (TDMP) on the structural dimensionality of hybrid metal halides. Dalton Transactions, 2022, 51, 10758-10762.                                                                                                                                                                                       | 3.3   | 2            |
| 61 | Hydrothermal Synthesis of Two Cuprous Bromide Compounds Using Zinc Metal as Reductant.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 744-748.                                                                                                                                                                                            | 1.2   | 1            |
| 62 | Analysis and Prediction of Stacking Sequences in Intercalated Lamellar Vanadium Phosphates.<br>European Journal of Inorganic Chemistry, 2015, 2015, 1941-1945.                                                                                                                                                                                               | 2.0   | 1            |
| 63 | Crystal structure of<br>(μ- <i>trans</i> -1,2-bis{2-[(2-oxidophenyl)methylidene]hydrazin-1-ylidene}ethane-1,2-diolato-ΰ <sup>3</sup> ) Tj<br>Crystallographic Communications, 2018, 74, 799-802.                                                                                                                                                             | ETQq1 | 1 0,784314 r |
| 64 | Cocrystallization through the use of a salt: The case of thiourea with a new propanediammonium oxalate salt. Journal of Crystal Growth, 2019, 528, 125267.                                                                                                                                                                                                   | 1.5   | 1            |
| 65 | Synthesis, crystal structure and electrochemical properties of a new methylammonium sodium<br>decavanate salt Na3(CH3NH3)3[V10O28].(CH3NH2).14H2O. Journal of Molecular Structure, 2022, 1254,<br>132321.                                                                                                                                                    | 3.6   | 1            |
| 66 | Reply to Comment on "Oxygen-Vacancy-Induced Midgap States Responsible for the Fluorescence and the Long-Lasting Phosphorescence of the Inverse Spinel Mg(Mg,Sn)O <sub>4</sub> ― Chemistry of Materials, 2020, 32, 7568-7568.                                                                                                                                 | 6.7   | 0            |
| 67 | Tuning the emission color and temperature range of dual-mode luminescent thermometer by dopant valence states control. Applied Materials Today, 2022, 26, 101349.                                                                                                                                                                                            | 4.3   | 0            |
| 68 | A new combined approach to investigate stacking faults in lamellar compounds. , 2011, , 49-54.                                                                                                                                                                                                                                                               |       | 0            |

A new combined approach to investigate stacking faults in lamellar compounds. , 2011, , 49-54. 68