Antonio Lanzavecchia

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3852119/antonio-lanzavecchia-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 126 29,839 120 h-index g-index citations papers 126 6.8 34,734 24 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
120	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift <i>Nature</i> , 2021 ,	50.4	204
119	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. 2021 ,		16
118	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	3
117	Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. <i>Nature</i> , 2021 , 592, 639-643	50.4	5
116	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. <i>Nature</i> , 2021 , 593, 136-141	50.4	376
115	A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. <i>Nature Microbiology</i> , 2021 , 6, 830-841	26.6	3
114	Clonally expanded EOMES Tr1-like cells in primary and metastatic tumors are associated with disease progression. <i>Nature Immunology</i> , 2021 , 22, 735-745	19.1	10
113	Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. <i>Science</i> , 2021 , 372, 1336-1341	33.3	33
112	Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. <i>Nature Communications</i> , 2021 , 12, 3532	17.4	8
111	Structural basis of LAIR1 targeting by polymorphic Plasmodium RIFINs. <i>Nature Communications</i> , 2021 , 12, 4226	17.4	
110	Broadly reactive human CD4 T cells against Enterobacteriaceae are found in the nawe repertoire and are clonally expanded in the memory repertoire. <i>European Journal of Immunology</i> , 2021 , 51, 648-66	1 ^{6.1}	6
109	Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. <i>Science Immunology</i> , 2021 , 6,	28	20
108	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. <i>Nature</i> , 2021 , 598, 342-347	750.4	63
107	Broad betacoronavirus neutralization by a stem helix-specific human antibody. <i>Science</i> , 2021 , 373, 1109	-33.36	80
106	SARS-CoV-2 B.1.1.7 sensitivity to mRNA vaccine-elicited, convalescent and monoclonal antibodies 2021 ,		69
105	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. <i>Nature</i> , 2020 , 583, 290	-3954	1028
104	Structural and functional analysis of a potent sarbecovirus neutralizing antibody 2020,		42

(2017-2020)

103	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. <i>Cell</i> , 2020 , 183, 1024-1042.e21	56.2	601
102	AncesTree: An interactive immunoglobulin lineage tree visualizer. <i>PLoS Computational Biology</i> , 2020 , 16, e1007731	5	4
101	Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. <i>Journal of Experimental Medicine</i> , 2020 , 217,	16.6	11
100	AncesTree: An interactive immunoglobulin lineage tree visualizer 2020 , 16, e1007731		
99	AncesTree: An interactive immunoglobulin lineage tree visualizer 2020 , 16, e1007731		
98	AncesTree: An interactive immunoglobulin lineage tree visualizer 2020 , 16, e1007731		
97	AncesTree: An interactive immunoglobulin lineage tree visualizer 2020 , 16, e1007731		
96	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. <i>Cell</i> , 2019 , 176, 1026-1039.e15	56.2	416
95	Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. <i>Science Immunology</i> , 2019 , 4,	28	54
94	Persistent Antibody Clonotypes Dominate the Serum Response to Influenza over Multiple Years and Repeated Vaccinations. <i>Cell Host and Microbe</i> , 2019 , 25, 367-376.e5	23.4	47
93	Dissecting human antibody responses: useful, basic and surprising findings. <i>EMBO Molecular Medicine</i> , 2018 , 10,	12	13
92	A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. <i>Nature Medicine</i> , 2018 , 24, 401-407	50.5	110
91	Role of B cells in T cell responses in a mouse model of asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 141, 1395-1410	11.5	20
90	An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. <i>Cell</i> , 2018 , 174, 1158-1171.e19	56.2	106
89	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1-4. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12265-12270	11.5	41
88	T cells in patients with harcolepsy target self-antigens of hypocretin neurons. <i>Nature</i> , 2018 , 562, 63-68	50.4	161
87	Macrophage Death following Influenza Vaccination Initiates the Inflammatory Response that Promotes Dendritic Cell Function in the Draining Lymph Node. <i>Cell Reports</i> , 2017 , 18, 2427-2440	10.6	33
86	Social network architecture of human immune cells unveiled by quantitative proteomics. <i>Nature Immunology</i> , 2017 , 18, 583-593	19.1	189

85	High-avidity IgA protects the intestine by enchaining growing bacteria. <i>Nature</i> , 2017 , 544, 498-502	50.4	196
84	Protection of calves by a prefusion-stabilized bovine RSV F vaccine. <i>Npj Vaccines</i> , 2017 , 2, 7	9.5	27
83	Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. <i>Nature</i> , 2017 , 548, 597-601	50.4	66
82	Immune stealth-driven O2 serotype prevalence and potential for therapeutic antibodies against multidrug resistant Klebsiella pneumoniae. <i>Nature Communications</i> , 2017 , 8, 1991	17.4	37
81	Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. <i>Science</i> , 2016 , 353, 823-6	33.3	528
80	Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. <i>Cell</i> , 2016 , 166, 596-608	56.2	228
79	L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. <i>Cell</i> , 2016 , 167, 829-842.e13	56.2	631
78	Antibody-guided vaccine design: identification of protective epitopes. <i>Current Opinion in Immunology</i> , 2016 , 41, 62-67	7.8	35
77	Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. <i>Science</i> , 2016 , 351, 1339-42	33.3	280
76	Structural and molecular basis for Ebola virus neutralization by protective human antibodies. <i>Science</i> , 2016 , 351, 1343-6	33.3	134
75	SARS-like WIV1-CoV poised for human emergence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3048-53	11.5	279
74	A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. <i>Nature</i> , 2016 , 529, 105-109	50.4	105
73	Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. <i>EMBO Molecular Medicine</i> , 2016 , 8, 407-21	12	51
72	Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. <i>Journal of Infection and Public Health</i> , 2016 , 9, 231-5	7.4	33
71	ERK phosphorylation and miR-181a expression modulate activation of human memory TH17 cells. <i>Nature Communications</i> , 2015 , 6, 6431	17.4	26
7º	Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 10473-8	11.5	170
69	A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. <i>Nature Medicine</i> , 2015 , 21, 1508-13	50.5	529
68	T cell immunity. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. <i>Science</i> , 2015 , 347, 400-6	33.3	233

(2000-2015)

67	Serum Immunoglobulin A Cross-Strain Blockade of Human Noroviruses. <i>Open Forum Infectious Diseases</i> , 2015 , 2, ofv084	1	23
66	Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. <i>Nature Communications</i> , 2015 , 6, 7375	17.4	61
65	Within-host evolution results in antigenically distinct GII.4 noroviruses. <i>Journal of Virology</i> , 2014 , 88, 7244-55	6.6	48
64	Rapid development of broadly influenza neutralizing antibodies through redundant mutations. <i>Nature</i> , 2014 , 516, 418-22	50.4	219
63	Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17965-70	11.5	96
62	Particle conformation regulates antibody access to a conserved GII.4 norovirus blockade epitope. <i>Journal of Virology</i> , 2014 , 88, 8826-42	6.6	41
61	Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. <i>Nature</i> , 2013 , 501, 439-	43 0.4	175
60	Pathogen-induced human TH17 cells produce IFN-for IL-10 and are regulated by IL-1[] <i>Nature</i> , 2012 , 484, 514-8	50.4	664
59	Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. <i>Journal of Clinical Investigation</i> , 2012 , 122, 3781-90	15.9	112
58	A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. <i>Science</i> , 2011 , 333, 850-6	33.3	891
57	Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. <i>Journal of Infectious Diseases</i> , 2010 , 201, 946-55	7	79
56	Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. <i>Journal of Virology</i> , 2008 , 82, 3220-35	6.6	128
55	Human monoclonal antibodies by immortalization of memory B cells. <i>Current Opinion in Biotechnology</i> , 2007 , 18, 523-8	11.4	62
54	Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. <i>Nature Immunology</i> , 2007 , 8, 639-46	19.1	1437
53	An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. <i>Nature Medicine</i> , 2004 , 10, 871-5	50.5	563
52	Maintenance of serological memory by polyclonal activation of human memory B cells. <i>Science</i> , 2002 , 298, 2199-202	33.3	1046
51	Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. European Journal of Immunology, 2000 , 30, 2394-403	6.1	261
50	Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. <i>European Journal of Immunology</i> , 2000 , 30, 705-8	6.1	80

49	The role of chemokine receptors in primary, effector, and memory immune responses. <i>Annual Review of Immunology</i> , 2000 , 18, 593-620	34.7	891
48	Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells 2000 , 30, 705		4
47	Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. <i>Nature Medicine</i> , 1999 , 5, 919-23	50.5	1387
46	Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. <i>Nature</i> , 1999 , 402, 34-38	50.4	16
45	T-cell activation and the dynamic world of rafts. <i>Apmis</i> , 1999 , 107, 615-23	3.4	32
44	Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. <i>Nature</i> , 1999 , 401, 708-12	50.4	4728
43	Distinct patterns and kinetics of chemokine production regulate dendritic cell function. <i>European Journal of Immunology</i> , 1999 , 29, 1617-25	6.1	549
42	Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. <i>European Journal of Immunology</i> , 1999 , 29, 4037-42	6.1	156
41	The interplay between the duration of TCR and cytokine signaling determines T cell polarization. <i>European Journal of Immunology</i> , 1999 , 29, 4092-101	6.1	155
40	T lymphocyte costimulation mediated by reorganization of membrane microdomains. <i>Science</i> , 1999 , 283, 680-2	33.3	850
39	Distinct patterns and kinetics of chemokine production regulate dendritic cell function 1999 , 29, 1617		1
38	The interplay between the duration of TCR and cytokine signaling determines T cell polarization 1999 , 29, 4092		8
37	Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. <i>European Journal of Immunology</i> , 1998 , 28, 2760-9	6.1	949
36	Re-expression of RAG-1 and RAG-2 genes and evidence for secondary rearrangements in human germinal center B lymphocytes. <i>European Journal of Immunology</i> , 1998 , 28, 3506-13	6.1	46
35	Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation 1998 , 28, 2760		2
34	Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. <i>Science</i> , 1997 , 277, 2005-7	33.3	916
33	Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. <i>Nature</i> , 1997 , 388, 782-7	50.4	911
32	Agonist-induced T cell receptor down-regulation: molecular requirements and dissociation from T cell activation. <i>European Journal of Immunology</i> , 1997 , 27, 1769-73	6.1	55

31	The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. <i>European Journal of Immunology</i> , 1997 , 27, 2417-25	6.1	330
30	A T cell receptor (TCR) antagonist competitively inhibits serial TCR triggering by low-affinity ligands, but does not affect triggering by high-affinity anti-CD3 antibodies. <i>European Journal of Immunology</i> , 1997 , 27, 3080-3	6.1	19
29	Signal extinction and T cell repolarization in T helper cell-antigen-presenting cell conjugates. <i>European Journal of Immunology</i> , 1996 , 26, 2012-6	6.1	61
28	Serial triggering of many T-cell receptors by a few peptide-MHC complexes. <i>Nature</i> , 1995 , 375, 148-51	50.4	961
27	CD40 ligand-independent B cell activation revealed by CD40 ligand-deficient T cell clones: evidence for distinct activation requirements for antibody formation and B cell proliferation. <i>European Journal of Immunology</i> , 1995 , 25, 1788-93	6.1	57
26	Professional presentation of antigen by activated human T cells. <i>European Journal of Immunology</i> , 1994 , 24, 71-5	6.1	95
25	Clonal expansions of V delta 1+ and V delta 2+ cells increase with age and limit the repertoire of human gamma delta T cells. <i>European Journal of Immunology</i> , 1994 , 24, 1914-8	6.1	52
24	T cell epitope analysis with peptides simultaneously synthesized on cellulose membranes: fine mapping of two DQ dependent epitopes. <i>FEBS Letters</i> , 1994 , 352, 167-70	3.8	20
23	Presentation of self-peptides: consequences for self nonself discrimination and allorecognition. <i>International Reviews of Immunology</i> , 1993 , 10, 321-6	4.6	
22	The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. <i>European Journal of Immunology</i> , 1993 , 23, 425-32	6.1	102
21	Role of cAMP in regulating cytotoxic T lymphocyte adhesion and motility. <i>European Journal of Immunology</i> , 1993 , 23, 790-5	6.1	45
20	Irreversible association of peptides with class II MHC molecules in living cells. <i>Nature</i> , 1992 , 357, 249-52	50.4	156
19	T cell clones with normal or defective O-galactosylation from a patient with permanent mixed-field polyagglutinability. <i>European Journal of Immunology</i> , 1992 , 22, 1835-42	6.1	28
18	Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. <i>European Journal of Immunology</i> , 1992 , 22, 2573-8	6.1	276
17	T cell activation by a bispecific anti-CD3/anti-major histocompatibility complex class I antibody. <i>European Journal of Immunology</i> , 1990 , 20, 1393-6	6.1	9
16	How many ways can a killer cell kill?. <i>International Reviews of Immunology</i> , 1989 , 4, 109-14	4.6	
15	Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. <i>European Journal of Immunology</i> , 1989 , 19, 2237-42	6.1	631
14	In vivo localization of a bispecific antibody which targets human T lymphocytes to lyse human colon cancer cells. <i>International Journal of Cancer</i> , 1989 , 43, 501-7	7.5	21

13	T cells can present antigens such as HIV gp120 targeted to their own surface molecules. <i>Nature</i> , 1988 , 334, 530-2	50.4	278
12	The use of hybrid hybridomas to target human cytotoxic T lymphocytes. <i>European Journal of Immunology</i> , 1987 , 17, 105-11	6.1	180
11	Lysis of nonnucleated red blood cells by cytotoxic T lymphocytes. <i>European Journal of Immunology</i> , 1987 , 17, 1073-4	6.1	14
10	Antigen uptake and accumulation in antigen-specific B cells. <i>Immunological Reviews</i> , 1987 , 99, 39-51	11.3	136
9	Is the T-cell receptor involved in T-cell killing?. <i>Nature</i> , 1986 , 319, 778-80	50.4	60
8	Antigen-specific interaction between T and B cells. <i>Nature</i> , 1985 , 314, 537-9	50.4	1198
7	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. <i>Nature</i> ,	50.4	44
6	Defective neutralizing antibody response to SARS-CoV-2 in vaccinated dialysis patients		2
5	Structure, receptor recognition and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glyc	oprote	in ₂
4	Membrane lectins enhance SARS-CoV-2 infection and influence the neutralizing activity of different classes of antibodies		18
3	A human antibody that broadly neutralizes betacoronaviruses protects against SARS-CoV-2 by blocking the fusion machinery		13
2	ACE2 engagement exposes the fusion peptide to pan-coronavirus neutralizing antibodies		3
1	Imprinted antibody responses against SARS-CoV-2 Omicron sublineages		5