Triona Ni Chonghaile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3851956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the Design and Development of PROTAC-mediated HDAC Degradation. Current Topics in Medicinal Chemistry, 2022, 22, 408-424.	2.1	10
2	JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia, 2022, 36, 1499-1507.	7.2	6
3	Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188462.	7.4	9
4	Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Science Advances, 2021, 7, .	10.3	38
5	The spleen as a sanctuary site for residual leukemic cells following ABT-199 monotherapy in ETP-ALL. Blood Advances, 2021, 5, 1963-1976.	5.2	9
6	Metabolic Changes in Venetoclax Resistance Are Determined By Differentiation State in T-Cell Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3401-3401.	1.4	0
7	Venetoclax and Epigenetic Modifiers: Promising Novel Combinations for the Treatment of Multiple Myeloma. Blood, 2021, 138, 4703-4703.	1.4	1
8	A Functional Genomic Screen Identifies the Deubiquitinase USP11 as a Novel Transcriptional Regulator of ERα in Breast Cancer. Cancer Research, 2020, 80, 5076-5088.	0.9	18
9	Secondary plasma cell leukaemia treated with single agent venetoclax. British Journal of Haematology, 2020, 190, e242-e245.	2.5	12
10	BET Inhibition as a Rational Therapeutic Strategy for Invasive Lobular Breast Cancer. Clinical Cancer Research, 2019, 25, 7139-7150.	7.0	18
11	The Anti-inflammatory Compound Candesartan Cilexetil Improves Neurological Outcomes in a Mouse Model of Neonatal Hypoxia. Frontiers in Immunology, 2019, 10, 1752.	4.8	16
12	BH3 mimetics: Weapons of cancer cell destruction. Science Translational Medicine, 2019, 11, .	12.4	5
13	The Splenic Microenvironment Is a Novel Site of Relapse Following ABT-199 Treatment. Blood, 2019, 134, 3800-3800.	1.4	0
14	PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 3094-3114.	8.5	37
15	Patient-derived organoids: Are PDOs the new PDX?. Science Translational Medicine, 2018, 10, .	12.4	3
16	Deadly role of chromosomal instability in metastasis. Science Translational Medicine, 2018, 10, .	12.4	0
17	Fighting leukemia with "duel―targeted therapy. Science Translational Medicine, 2018, 10, .	12.4	0
18	Ironing out dedifferentiation in melanoma. Science Translational Medicine, 2018, 10, .	12.4	1

2

TRIONA NI CHONGHAILE

#	Article	IF	CITATIONS
19	Identifying and targeting residual leukemic cells. Science Translational Medicine, 2018, 10, .	12.4	0
20	Illuminating Aurora dependencies. Science Translational Medicine, 2018, 10, .	12.4	0
21	The Emerging Role of Non-traditional Ubiquitination in Oncogenic Pathways. Journal of Biological Chemistry, 2017, 292, 3543-3551.	3.4	41
22	Therapeutic Rationale to Target Highly Expressed CDK7 Conferring Poor Outcomes in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 3834-3845.	0.9	79
23	Big Data–Led Cancer Research, Application, and Insights. Cancer Research, 2016, 76, 6167-6170.	0.9	7
24	Diagnostic and Therapeutic Implications of Histone Epigenetic Modulators in Breast Cancer. Expert Review of Molecular Diagnostics, 2016, 16, 541-551.	3.1	4
25	BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia, 2016, 30, 761-764.	7.2	128
26	MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Reports, 2015, 13, 2715-2727.	6.4	118
27	BCL-2 modulates the unfolded protein response by enhancing splicing of X-box binding protein-1. Biochemical and Biophysical Research Communications, 2015, 466, 40-45.	2.1	10
28	Targeting the miR-221–222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma. Cancer Research, 2015, 75, 4384-4397.	0.9	76
29	Cell and Molecular Determinants of <i>In Vivo</i> Efficacy of the BH3 Mimetic ABT-263 against Pediatric Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2014, 20, 4520-4531.	7.0	67
30	Maturation Stage of T-cell Acute Lymphoblastic Leukemia Determines BCL-2 versus BCL-XL Dependence and Sensitivity to ABT-199. Cancer Discovery, 2014, 4, 1074-1087.	9.4	201
31	BH3 Profiling Identifies Bcl-2 Dependency in Multiple Myeloma and Predicts Sensitivity to BH3 Mimetics. Blood, 2014, 124, 417-417.	1.4	0
32	Mitochondria: gatekeepers of response to chemotherapy. Trends in Cell Biology, 2013, 23, 612-619.	7.9	140
33	Therapeutic Targeting of the Bcl2 Family. Blood, 2013, 122, SCI-42-SCI-42.	1.4	0
34	P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood, 2012, 119, 1468-1478.	1.4	103
35	Pretreatment Mitochondrial Priming Correlates with Clinical Response to Cytotoxic Chemotherapy. Science, 2011, 334, 1129-1133.	12.6	502
36	Who Put the "A―in Atg12: Autophagy or Apoptosis?. Molecular Cell, 2011, 44, 844-845.	9.7	10

#	Article	IF	CITATIONS
37	Mitochondrial Apoptotic Priming Measured by BH3 Profiling Regulates Clinical Response to Chemotherapy in Myeloma and Acute Lymphoblastic Leukemia and Explains Therapeutic Index. Blood, 2011, 118, 1442-1442.	1.4	0
38	Bcl-2 family on guard at the ER. American Journal of Physiology - Cell Physiology, 2009, 296, C941-C953.	4.6	222
39	Mimicking the BH3 domain to kill cancer cells. Oncogene, 2008, 27, S149-S157.	5.9	218
40	Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bclâ€ĸL. Journal of Cellular and Molecular Medicine, 2007, 11, 509-520.	3.6	78
41	Dexamethasone inhibits apoptosis in C6 glioma cells through increased expression of Bcl-XL. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1247-1255.	4.9	29