Franco Mastroddi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385184/publications.pdf Version: 2024-02-01

FRANCO MASTRODDI

#	Article	IF	CITATIONS
1	Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter. Aerospace Science and Technology, 2020, 97, 105634.	4.8	73
2	Matrix fraction approach for finite-state aerodynamic modeling. AIAA Journal, 1995, 33, 703-711.	2.6	67
3	Shunted piezoelectric patches in elastic and aeroelastic vibrations. Computers and Structures, 2003, 81, 91-105.	4.4	54
4	Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. Micromachines, 2020, 11, 933.	2.9	41
5	Study of Reduced-Order Models for Gust-Respnse Analysis of Flexible Fixed Wings. Journal of Aircraft, 2004, 41, 304-313.	2.4	38
6	Limit-cycle stability reversal via singular perturbation and wing-flap flutter. Journal of Fluids and Structures, 2004, 19, 765-783.	3.4	29
7	Finite-Element-Based Modeling for Flight Dynamics and Aeroelasticity of Flexible Aircraft. Journal of Aircraft, 2017, 54, 2350-2366.	2.4	29
8	Analysis of Pareto frontiers for multidisciplinary design optimization of aircraft. Aerospace Science and Technology, 2013, 28, 40-55.	4.8	28
9	Aeroelastics Flight Dynamics Coupling Effects of the Semi-Aeroelastic Hinge Device. Journal of Aircraft, 2020, 57, 333-341.	2.4	28
10	Nonlinear Dynamics of a Beam on Elastic Foundation. Nonlinear Dynamics, 1997, 14, 335-355.	5.2	27
11	LIMIT-CYCLE STABILITY REVERSAL NEAR A HOPF BIFURCATION WITH AEROELASTIC APPLICATIONS. Journal of Sound and Vibration, 2002, 256, 347-365.	3.9	24
12	A linearized reduced-order model approach for sloshing to be used for aerospace design. Aerospace Science and Technology, 2021, 108, 106369.	4.8	24
13	Linearized Aeroelastic Analysis for a Launch Vehicle in Transonic Flight Conditions. Journal of Spacecraft and Rockets, 2006, 43, 92-104.	1.9	20
14	A nonlinear analysis of stability and gust response of aeroelastic systems. Journal of Fluids and Structures, 2008, 24, 436-445.	3.4	19
15	On the use of geometry design variables in the MDO analysis of wing structures with aeroelastic constraints on stability and response. Aerospace Science and Technology, 2011, 15, 196-206.	4.8	19
16	Time- and frequency-domain linear viscoelastic modeling of highly damped aerospace structures. Mechanical Systems and Signal Processing, 2019, 122, 42-55.	8.0	19
17	Experimental characterisation of sloshing tank dissipative behaviour in vertical harmonic excitation. Journal of Fluids and Structures, 2022, 109, 103478.	3.4	19
18	Autonomy for underwater robots—a European perspective. Autonomous Robots, 2016, 40, 1113-1118.	4.8	18

Franco Mastroddi

#	Article	IF	CITATIONS
19	A fifth-order multiple-scale solution for Hopf bifurcations. Computers and Structures, 2004, 82, 2723-2731.	4.4	17
20	Multi-modal damping by shunted piezo-patches: Possible aeroelastic applications. International Journal of Applied Electromagnetics and Mechanics, 2006, 24, 1-24.	0.6	16
21	Hydrofoil vibration induced by a random flow: a stochastic perturbation approach. Journal of Sound and Vibration, 2005, 283, 401-432.	3.9	15
22	Sloshing reduced-order model based on neural networks for aeroelastic analyses. Aerospace Science and Technology, 2022, 127, 107708.	4.8	14
23	Linearized Aeroelastic Gust Response Analysis of a Launch Vehicle. Journal of Spacecraft and Rockets, 2011, 48, 420-432.	1.9	13
24	POD analysis for free response of linear and nonlinear marginally stable aeroelastic dynamical systems. Journal of Fluids and Structures, 2012, 33, 85-108.	3.4	13
25	Nonlinear Aeroelastic Trim of Very Flexible Aircraft Described by Detailed Models. Journal of Aircraft, 2018, 55, 2338-2346.	2.4	13
26	APPLICABILITY CONDITIONS OF A NON-LINEAR SUPERPOSITION TECHNIQUE. Journal of Sound and Vibration, 1997, 200, 3-14.	3.9	12
27	Aeroelastic Sensitivity Analyses for Flutter Speed and Gust Response. Journal of Aircraft, 2000, 37, 172-180.	2.4	12
28	Nonlinear reduced-order model for vertical sloshing by employing neural networks. Nonlinear Dynamics, 2022, 107, 1469-1478.	5.2	12
29	Sloshing reduced-order models for aeroelastic analyses of innovative aircraft configurations. Aerospace Science and Technology, 2021, 118, 107075.	4.8	12
30	Normal form analysis of a forced aeroelastic plate. Journal of Sound and Vibration, 2017, 390, 141-163.	3.9	10
31	Nonlinear aeroelastic modeling via conformal mapping and vortex method for a flat-plate airfoil in arbitrary motion. Journal of Fluids and Structures, 2016, 62, 230-251.	3.4	9
32	Assessment and development of a ROM for linearized aeroelastic analyses of aerospace vehicles. CEAS Aeronautical Journal, 2017, 8, 353-369.	1.7	9
33	Structural damping models for passive aeroelastic control. Aerospace Science and Technology, 2021, 118, 107011.	4.8	9
34	Unsteady Aeroelastic Analysis of the Semi Aeroelastic Hinge Including Local Geometric Nonlinearities. AIAA Journal, 2022, 60, 3147-3165.	2.6	9
35	Mechanical systems virtual sensing by proportional observer and multi-resolution analysis. Mechanical Systems and Signal Processing, 2021, 146, 107003.	8.0	8
36	Post-buckling longterm dynamics of a forced nonlinear beam: A perturbation approach. Journal of Sound and Vibration, 2014, 333, 2617-2631.	3.9	7

FRANCO MASTRODDI

#	Article	IF	CITATIONS
37	OMA analysis of a launcher under operational conditions with time-varying properties. CEAS Space Journal, 2018, 10, 381-406.	2.3	7
38	Experimental validation of solid rocket motor damping models. CEAS Space Journal, 2018, 10, 213-230.	2.3	6
39	Structural validation of a realistic wing structure: the RIBES test article. Procedia Structural Integrity, 2018, 12, 448-456.	0.8	6
40	Quasi-Steady Aeroelastic Analysis of the Semi-Aeroelastic Hinge Including Geometric Nonlinearities. Journal of Aircraft, 2021, 58, 1168-1178.	2.4	6
41	Aeroelastic Response of Composite Aircraft Swept Wings Impacted by a Laser Beam. AIAA Journal, 2006, 44, 382-391.	2.6	5
42	On the modal decoupling of linear mechanical systems with frequency-dependent viscoelastic behavior. Mechanical Systems and Signal Processing, 2016, 70-71, 769-787.	8.0	5
43	On the modal diagonalization of viscoelastic mechanical systems. Mechanical Systems and Signal Processing, 2017, 96, 159-175.	8.0	5
44	Semi-analytical unsteady aerodynamic model of a flexible thin airfoil. Journal of Fluids and Structures, 2018, 80, 288-315.	3.4	5
45	WAVELET ANALYSIS FOR HOPF BIFURCATIONS WITH AEROELASTIC APPLICATIONS. Journal of Sound and Vibration, 1999, 225, 887-913.	3.9	4
46	Sensitivity Analysis for the Dynamic Aeroelasticity of a Launch Vehicle. Journal of Spacecraft and Rockets, 2008, 45, 999-1009.	1.9	4
47	A Normal Form analysis in a finite neighborhood of a Hopf bifurcation: on the Center Manifold dimension. Nonlinear Dynamics, 2018, 91, 1461-1472.	5.2	4
48	Aerothermoelastic Response of a Functionally-Graded Aircraft Wing to Heat Loads. , 2008, , .		3
49	Aerothermoelastic Stability of Composite Aerovehicle Wings Subjected to Heat Inputs. AIAA Journal, 2008, 46, 992-1001.	2.6	3
50	Non-linear modelling for Multi-Disciplinary and Multi-Objective Optimization of a complete aircraft. Aerotecnica Missili & Spazio, 2013, 92, 61-68.	0.9	3
51	Multi-disciplinary and multi-objective optimization of an over-wing-nacelle aircraft concept. CEAS Aeronautical Journal, 2019, 10, 771-793.	1.7	3
52	Multidisciplinary Design and Optimization for Fluid-Structure Interactions. , 2002, , .		3
53	Multidisciplinary Design Optimization for the Preliminary Design of Aeronautical Configurations. , 2004, , .		2
54	Aeroelastic Identification of Flying UAVs by Output-Only Data with Applications on Vibrations Passive Control. , 2010, , .		2

Franco Mastroddi

#	Article	IF	CITATIONS
55	MDO analyses of wing structures for a complete aeroelastically constrained aircraft. CEAS Aeronautical Journal, 2012, 3, 67-77.	1.7	2
56	Multi-Disciplinary and Multi-Objective Optimization of an Unconventional Aircraft Concept. , 2015, , .		2
57	POD approach for unsteady aerodynamic model updating. CEAS Aeronautical Journal, 2015, 6, 121-136.	1.7	2
58	Multiphysics numerical investigation on the aeroelastic stability of a Le Mans Prototype car. Procedia Structural Integrity, 2019, 24, 875-887.	0.8	2
59	Sloshing ROMs for Fluid-Structure Interactions in Aerospace Applications. , 2020, , .		2
60	Experimental Evaluation of Piezoelectric Energy Harvester Based on Flag-Flutter. Lecture Notes in Mechanical Engineering, 2020, , 807-816.	0.4	2
61	On Modeling of Piezoelectric Patches in Aeroelastic Vibrations. , 2002, , 531.		1
62	Multidisciplinary Design Optimization for Aircraft Configurations. , 2006, , .		1
63	Aerothermoelastic Stability of Composite Aircraft Wings Subjected to Heat Inputs. , 2006, , .		1
64	Preliminary Design of an Amphibious Aircraft by the Multidisciplinary Design Optimization Approach. , 2007, , .		1
65	Multi-frequency dynamic absorber for improved spacecraft comfort during the launch phase. CEAS Space Journal, 2012, 3, 77-88.	2.3	1
66	Analytical formulation of 2-D aeroelastic model in weak ground effect. Journal of Fluids and Structures, 2013, 42, 270-295.	3.4	1
67	Coupled Flight Dynamics and Aeroelasticity of Very Flexible Aircraft Based on Commercial Finite Element Solvers. , 2018, , .		1
68	Experimental Validation of Neural-Network-Based Nonlinear Reduced-Order Model for Vertical Sloshing. , 2022, , .		1
69	Surrogate Finite-Element Modelling for Launch Vehicle Multidisciplinary Optimization. , 2022, , .		1
70	Sloshing Wing Dynamics - 2nd Year Project Overview. , 2022, , .		1
71	Limit Cycle Stability Reversal via Singular Perturbation and Wing-Flap Flutter. , 2002, , 159.		0

52 Sensitivity analysis for the aeroelastic stability of a launch vehicle. , 2006, , .

0

#	Article	IF	CITATIONS
73	Damping Models in Aircraft Flutter Analyses. , 2020, , 419-427.		Ο
74	Nonlinear Sloshing Integrated Aeroelastic Analyses of a Research Wing Prototype. , 2022, , .		0