Aude Picard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385151/publications.pdf

Version: 2024-02-01

566801 525886 27 884 15 27 citations h-index g-index papers 27 27 27 1332 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarionâ€Clipperton Fracture Zone. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 91, 125-141.	0.6	113
2	Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica Et Cosmochimica Acta, 2018, 220, 367-384.	1.6	104
3	In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles, 2007, 11, 445-452.	0.9	103
4	Pressure as an environmental parameter for microbial life â€" A review. Biophysical Chemistry, 2013, 183, 30-41.	1.5	99
5	Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nature Communications, 2015, 6, 6277.	5.8	79
6	What Do We Really Know about the Role of Microorganisms in Iron Sulfide Mineral Formation?. Frontiers in Earth Science, 2016, 4, .	0.8	51
7	Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion–Clipperton Fracture Zone. Earth and Planetary Science Letters, 2016, 433, 215-225.	1.8	36
8	Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 434-442.	1.1	31
9	The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction. Geochimica Et Cosmochimica Acta, 2012, 88, 120-129.	1.6	31
10	Linking microbial heterotrophic activity and sediment lithology in oxic, oligotrophic sub-seafloor sediments of the North Atlantic Ocean. Frontiers in Microbiology, 2011, 2, 263.	1.5	29
11	Authigenic metastable iron sulfide minerals preserve microbial organic carbon in anoxic environments. Chemical Geology, 2019, 530, 119343.	1.4	28
12	Limited influence of Si on the preservation of Fe mineralâ€encrusted microbial cells during experimental diagenesis. Geobiology, 2016, 14, 276-292.	1.1	27
13	Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions. Frontiers in Microbiology, 2014, 5, 796.	1.5	21
14	Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific – A modern analogue for banded iron/chert formations?. Geochimica Et Cosmochimica Acta, 2014, 137, 188-207.	1.6	20
15	Sulphur and carbon isotopes as tracers of past sub-seafloor microbial activity. Scientific Reports, 2019, 9, 604.	1.6	19
16	A sensitive pressure sensor for diamond anvil cell experiments up to 2GPa: FluoSpheres \hat{A}^{\otimes} . Journal of Applied Physics, 2006, 100, 034915.	1.1	15
17	Monitoring microbial redox transformations of metal and metalloid elements under high pressure using <i>in situ</i> Xâ€ray absorption spectroscopy . Geobiology, 2011, 9, 196-204.	1.1	14
18	Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology, 2020, 18, 54-69.	1.1	14

#	Article	IF	CITATIONS
19	Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 512-517.	1.5	9
20	Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO2 storage site before CO2 arrival. Environmental Earth Sciences, 2017, 76, 1.	1.3	7
21	Pressure effects on sulfurâ€oxidizing activity of <i>Thiobacillus thioparus</i> . Environmental Microbiology Reports, 2021, 13, 169-175.	1.0	7
22	Quantification of Organic Carbon Sequestered by Biogenic Iron Sulfide Minerals in Long-Term Anoxic Laboratory Incubations. Frontiers in Microbiology, 2022, 13, 662219.	1.5	7
23	<i>In situ</i> Raman and Xâ€ray spectroscopies to monitor microbial activities under high hydrostatic pressure. Annals of the New York Academy of Sciences, 2010, 1189, 113-120.	1.8	5
24	Microbial activity in deep marine sediments: does pressure make the difference?. Journal of Physics: Conference Series, 2012, 377, 012054.	0.3	5
25	Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection. Astrobiology, 2021, 21, 587-604.	1.5	5
26	Coexistence of vitreous and crystalline phases of H $\langle sub \rangle 2 \langle sub \rangle$ O at ambient temperature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
27	Redox-Chemistry of Environmental Biofilms Probed on the Submicron Scale by in-situ Electrochemistry Scanning Transmission (soft) X-ray Microscopy. Microscopy and Microanalysis, 2018, 24, 502-505.	0.2	2