List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3851494/publications.pdf Version: 2024-02-01

HEDNÃ NI CEDÃ"S

#	Article	IF	CITATIONS
1	Early Activation of Antioxidant Responses in Ni-Stressed Tomato Cultivars Determines Their Resilience Under Co-exposure to Drought. Journal of Plant Growth Regulation, 2023, 42, 877-891.	2.8	7
2	Saccharomyces cerevisiae Cells Lacking the Zinc Vacuolar Transporter Zrt3 Display Improved Ethanol Productivity in Lignocellulosic Hydrolysates. Journal of Fungi (Basel, Switzerland), 2022, 8, 78.	1.5	3
3	Impact of Deficit Irrigation on Grapevine cv. †Touriga Nacional' during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants, 2022, 11, 732.	1.6	6
4	Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Computational and Structural Biotechnology Journal, 2021, 19, 1713-1737.	1.9	22
5	Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. International Journal of Biological Macromolecules, 2021, 171, 343-357.	3.6	13
6	Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology, 2021, 186, 836-852.	2.3	90
7	Vineyard calcium sprays reduce the damage of postharvest grape berries by stimulating enzymatic antioxidant activity and pathogen defense genes, despite inhibiting phenolic synthesis. Plant Physiology and Biochemistry, 2021, 162, 48-55.	2.8	9
8	Exogenous Calcium Delays Grape Berry Maturation in the White cv. Loureiro While Increasing Fruit Firmness and Flavonol Content. Frontiers in Plant Science, 2021, 12, 742887.	1.7	7
9	Calcium and methyl jasmonate cross-talk in the secondary metabolism of grape cells. Plant Physiology and Biochemistry, 2021, 165, 228-238.	2.8	14
10	Grapevine aquaporins: Diversity, cellular functions, and ecophysiological perspectives. Biochimie, 2021, 188, 61-76.	1.3	6
11	Molecular reprogramming in grapevine woody tissues at bud burst. Plant Science, 2021, 311, 110984.	1.7	8
12	Exogenous Application of Non-mature miRNA-Encoded miPEP164c Inhibits Proanthocyanidin Synthesis and Stimulates Anthocyanin Accumulation in Grape Berry Cells. Frontiers in Plant Science, 2021, 12, 706679.	1.7	24
13	The restructuring of grape berry waxes by calcium changes the surface microbiota. Food Research International, 2021, 150, 110812.	2.9	6
14	VviRafS5 Is a Raffinose Synthase Involved in Cold Acclimation in Grapevine Woody Tissues. Frontiers in Plant Science, 2021, 12, 754537.	1.7	7
15	Genome Wide Identification, Molecular Characterization, and Gene Expression Analyses of Grapevine NHX Antiporters Suggest Their Involvement in Growth, Ripening, Seed Dormancy, and Stress Response. Biochemical Genetics, 2020, 58, 102-128.	0.8	21
16	Exogenous calcium deflects grape berry metabolism towards the production of more stilbenoids and less anthocyanins. Food Chemistry, 2020, 313, 126123.	4.2	27
17	Vineyard calcium sprays shift the volatile profile of young red wine produced by induced and spontaneous fermentation. Food Research International, 2020, 131, 108983.	2.9	9
18	The grapevine CAX-interacting protein VvCXIP4 is exported from the nucleus to activate the tonoplast Ca2+/H+ exchanger VvCAX3. Planta, 2020, 252, 35.	1.6	1

#	Article	IF	CITATIONS
19	The Interplay between Atmospheric Conditions and Grape Berry Quality Parameters in Portugal. Applied Sciences (Switzerland), 2020, 10, 4943.	1.3	25
20	VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. Plant Physiology and Biochemistry, 2020, 154, 508-516.	2.8	13
21	Oral <i>Candida albicans</i> colonization in healthy individuals: prevalence, genotypic diversity, stability along time and transmissibility. Journal of Oral Microbiology, 2020, 12, 1820292.	1.2	11
22	Flavescence Dorée-Derived Leaf Yellowing in Grapevine (Vitis vinifera L.) Is Associated to a General Repression of Isoprenoid Biosynthetic Pathways. Frontiers in Plant Science, 2020, 11, 896.	1.7	6
23	The grapevine NIP2;1 aquaporin is a silicon channel. Journal of Experimental Botany, 2020, 71, 6789-6798.	2.4	24
24	Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition and expression of cell wall-related genes. Plant Physiology and Biochemistry, 2020, 150, 49-55.	2.8	29
25	Sweet Cherry (Prunus avium L.) PaPIP1;4 Is a Functional Aquaporin Upregulated by Pre-Harvest Calcium Treatments that Prevent Cracking. International Journal of Molecular Sciences, 2020, 21, 3017.	1.8	12
26	Resveratrol-Loaded Lipid Nanocarriers Are Internalized By Endocytosis in Yeast. Journal of Natural Products, 2019, 82, 1240-1249.	1.5	10
27	Mini implants osseointegration, molar intrusion and root resorption in Sinclair minipigs. International Orthodontics, 2019, 17, 733-743.	0.6	5
28	VvSWEET7 Is a Mono- and Disaccharide Transporter Up-Regulated in Response to Botrytis cinerea Infection in Grape Berries. Frontiers in Plant Science, 2019, 10, 1753.	1.7	41
29	Kaolin particle film application stimulates photoassimilate synthesis and modifies the primary metabolome of grape leaves. Journal of Plant Physiology, 2018, 223, 47-56.	1.6	43
30	Postharvest dehydration induces variable changes in the primary metabolism of grape berries. Food Research International, 2018, 105, 261-270.	2.9	22
31	Calcium- and hormone-driven regulation of secondary metabolism and cell wall enzymes in grape berry cells. Journal of Plant Physiology, 2018, 231, 57-67.	1.6	46
32	A molecular perspective on starch metabolism in woody tissues. Planta, 2018, 248, 559-568.	1.6	39
33	Isolation of Vacuoles from the Leaves of the Medicinal Plant Catharanthus roseus. Methods in Molecular Biology, 2018, 1789, 81-99.	0.4	2
34	Flow Cytometry and Fluorescence Microscopy as Tools for Structural and Functional Analysis of Vacuoles Isolated from Yeast and Plant Cells. Methods in Molecular Biology, 2018, 1789, 101-115.	0.4	1
35	Kaolin particle film application lowers oxidative damage and DNA methylation on grapevine (Vitis) Tj ETQq1 1	0.784314 r 2.0	gBT_/Overlock
36	Low source–sink ratio reduces reserve starch in grapevine woody canes and modulates sugar	1.6	23

transport and metabolism at transcriptional and enzyme activity levels. Planta, 2017, 246, 525-535.

#	Article	IF	CITATIONS
37	An efficient antioxidant system and heavy metal exclusion from leaves make <i>Solanum cheesmaniae</i> more tolerant to Cu than its cultivated counterpart. Food and Energy Security, 2017, 6, 123-133.	2.0	43
38	The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis. Planta, 2017, 246, 1083-1096.	1.6	15
39	Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget, 2016, 7, 62144-62158.	0.8	42
40	Kaolin Foliar Application Has a Stimulatory Effect on Phenylpropanoid and Flavonoid Pathways in Grape Berries. Frontiers in Plant Science, 2016, 7, 1150.	1.7	76
41	Analytical and Fluorimetric Methods for the Characterization of the Transmembrane Transport of Specialized Metabolites in Plants. Methods in Molecular Biology, 2016, 1405, 121-135.	0.4	1
42	Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. Journal of Plant Physiology, 2016, 191, 45-53.	1.6	77
43	The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water. PLoS ONE, 2016, 11, e0160976.	1.1	37
44	Changes in the volatile composition of wine from grapes treated with Bordeaux mixture: a laboratory-scale study. Australian Journal of Grape and Wine Research, 2015, 21, 425-429.	1.0	12
45	Identification and functional characterization of grapevine transporters that mediate glucose-6-phosphate uptake into plastids. Planta, 2015, 242, 909-920.	1.6	12
46	Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. Journal of Experimental Botany, 2015, 66, 889-906.	2.4	92
47	The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC) Regions. International Journal of Molecular Sciences, 2014, 15, 4237-4254.	1.8	37
48	The grape aquaporin VvSIP1 transports water across the ER membrane. Journal of Experimental Botany, 2014, 65, 981-993.	2.4	33
49	Copper-based fungicide Bordeaux mixture regulates the expression of <i>Vitis vinifera</i> copper transporters. Australian Journal of Grape and Wine Research, 2014, 20, 451-458.	1.0	21
50	Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1. Planta, 2014, 240, 91-101.	1.6	35
51	Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture. Plant Physiology and Biochemistry, 2014, 82, 270-278.	2.8	40
52	Mapping Grape Berry Photosynthesis by Chlorophyll Fluorescence Imaging: The Effect of Saturating Pulse Intensity in Different Tissues. Photochemistry and Photobiology, 2013, 89, 579-585.	1.3	19
53	Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles. Microbiology (United Kingdom), 2013, 159, 848-856.	0.7	10
54	Vacuolar Transport of the Medicinal Alkaloids from <i>Catharanthus roseus</i> Is Mediated by a Proton-Driven Antiport Â. Plant Physiology, 2013, 162, 1486-1496.	2.3	57

#	Article	IF	CITATIONS
55	Berry Phenolics of Grapevine under Challenging Environments. International Journal of Molecular Sciences, 2013, 14, 18711-18739.	1.8	373
56	Copper Transport and Compartmentation in Grape Cells. Plant and Cell Physiology, 2012, 53, 1866-1880.	1.5	45
57	The Biochemistry of the Grape Berry. , 2012, , .		25
58	Mineral Compounds in the Grape Berry. , 2012, , 23-43.		14
59	Source/Sink Relationships and Molecular Biology of Sugar Accumulation in Grape Berries. , 2012, , 44-66.		15
60	Grape Cell Vacuoles: Structure-Function and Solute Transport Across the Tonoplast. , 2012, , 160-171.		3
61	Membrane Transport, Sensing and Signaling in Plant Adaptation to Environmental Stress. Plant and Cell Physiology, 2011, 52, 1583-1602.	1.5	248
62	Mannitol Transport and Mannitol Dehydrogenase Activities are Coordinated in Olea europaea Under Salt and Osmotic Stresses. Plant and Cell Physiology, 2011, 52, 1766-1775.	1.5	85
63	Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome–mitochondria-mediated apoptosis in mammals. Biochemical Society Transactions, 2011, 39, 1533-1537.	1.6	16
64	New Observations on the Integrity, Structure, and Physiology of Flesh Cells from Fully Ripened Grape Berry. American Journal of Enology and Viticulture, 2011, 62, 279-284.	0.9	12
65	Grape Berry Vacuole: A Complex and Heterogeneous Membrane System Specialized in the Accumulation of Solutes. American Journal of Enology and Viticulture, 2011, 62, 270-278.	0.9	48
66	Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome–mitochondria-mediated apoptosis in mammals. Biochemical Society Transactions, 2011, 39, 1901-1901.	1.6	0
67	Role of Tonoplast Proton Pumps and Na+/H+ Antiport System in Salt Tolerance of Populus euphratica Oliv Journal of Plant Growth Regulation, 2010, 29, 23-34.	2.8	46
68	Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Research Notes, 2010, 3, 19.	0.6	24
69	A Method for the Isolation of Protoplasts from Grape Berry Mesocarp Tissue. Recent Patents on Biotechnology, 2010, 4, 125-129.	0.4	11
70	Isolation and Use of Protoplasts from Grapevine Tissues. , 2010, , 277-293.		2
71	Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems. International Journal of Biochemistry and Cell Biology, 2010, 42, 857-868.	1.2	32
72	Regulation by salt of vacuolar H ⁺ -ATPase and H ⁺ -pyrophosphatase activities and Na ⁺ /H ⁺ exchange. Plant Signaling and Behavior, 2009, 4, 718-726.	1.2	158

#	Article	IF	CITATIONS
73	Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. Journal of Experimental Botany, 2009, 60, 1363-1374.	2.4	73
74	Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1213-1228.	1.4	355
75	Sugar Transport & Sugar Sensing In Grape. , 2009, , 105-139.		21
76	Progress in Grapevine protoplast Technology. , 2009, , 429-460.		5
77	Physiological, biochemical and molecular changes occurring during olive development and ripening. Journal of Plant Physiology, 2008, 165, 1545-1562.	1.6	223
78	OeMST2 Encodes a Monosaccharide Transporter Expressed throughout Olive Fruit Maturation. Plant and Cell Physiology, 2007, 48, 1299-1308.	1.5	27
79	Phosphate transport by proteoid roots of Hakea sericea. Plant Science, 2007, 173, 550-558.	1.7	23
80	An Hg-sensitive channel mediates the diffusional component of glucose transport in olive cells. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2801-2811.	1.4	25
81	Utilization and Transport of Mannitol in Olea europaea and Implications for Salt Stress Tolerance. Plant and Cell Physiology, 2006, 48, 42-53.	1.5	79
82	The Non-host Pathogen Botrytis cinerea Enhances Glucose Transport in Pinus pinaster Suspension-cultured Cells. Plant and Cell Physiology, 2006, 47, 290-298.	1.5	21
83	Pathways of Glucose Regulation of Monosaccharide Transport in Grape Cells. Plant Physiology, 2006, 141, 1563-1577.	2.3	95
84	First report of Hakea sericea leaf infection caused by Pestalotiopsis funerea in Portugal. Plant Pathology, 2004, 53, 535-535.	1.2	13
85	Utilization and Transport of Glucose in Olea Europaea Cell Suspensions. Plant and Cell Physiology, 2002, 43, 1510-1517.	1.5	28
86	Utilization and Transport of Acetic Acid in Dekkera anomala and Their Implications on the Survival of the Yeast in Acidic Environments. Journal of Food Protection, 2000, 63, 96-101.	0.8	22
87	l–[U–14C]Lactate binding to a 43ÂkDa protein in plasma membranes of Candida utilis. Microbiology (United Kingdom), 2000, 146, 695-699.	0.7	1
88	Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeastCandida utilis. , 1996, 12, 1263-1272.		11