
Deepak Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3851169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. International Reviews of Immunology, 2022, 41, 423-437.	1.5	12
2	SARSâ€CoVâ€2 targeting by RNAi and host complement inhibition: A twoâ€pronged subterfuge for COVIDâ€19 treatment. Immunity, Inflammation and Disease, 2022, 10, 22-25.	1.3	4
3	Safety, efficacy and delivery of multiple nucleoside analogs via drug encapsulated carbon (DECON) based sustained drug release platform. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 150-159.	2.0	1
4	Optineurin in ocular herpes infection. Experimental Eye Research, 2022, 219, 109059.	1.2	2
5	Intrinsic Antiviral Activity of Optineurin Prevents Hyperproliferation of a Primary Herpes Simplex Virus Type 2 Infection. Journal of Immunology, 2022, 208, 63-73.	0.4	5
6	OPTN (optineurin)-mediated selective autophagy prevents neurodegeneration due to herpesvirus infection. Autophagy, 2022, 18, 944-945.	4.3	9
7	Plasma Membrane-Derived Liposomes Exhibit Robust Antiviral Activity against HSV-1. Viruses, 2022, 14, 799.	1.5	4
8	CREB3 Plays an Important Role in HPSE-Facilitated HSV-1 Release in Human Corneal Epithelial Cells. Viruses, 2022, 14, 1171.	1.5	3
9	Immune Response to SARS-CoV-2 Vaccines. Biomedicines, 2022, 10, 1464.	1.4	24
10	Recent advancements and nanotechnological interventions in diagnosis, treatment, and vaccination for COVID-19. , 2022, , 279-303.		0
11	Dysregulation of Cell Signaling by SARS-CoV-2. Trends in Microbiology, 2021, 29, 224-237.	3.5	62
12	The 3- <i>O</i> -sulfation of heparan sulfate modulates protein binding and lyase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
13	Dissociation of DNA damage sensing by endoglycosidase HPSE. IScience, 2021, 24, 102242.	1.9	7
14	Pathobiology and treatment of viral keratitis. Experimental Eye Research, 2021, 205, 108483.	1.2	23
15	Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis. Seminars in Thrombosis and Hemostasis, 2021, 47, 283-294.	1.5	12
16	Disruption of innate defense responses by endoglycosidase HPSE promotes cell survival. JCI Insight, 2021, 6, .	2.3	14
17	Heparan Sulfate Binding Cationic Peptides Restrict SARS-CoV-2 Entry. Pathogens, 2021, 10, 803.	1.2	5
18	Histatinâ€l is an endogenous ligand of the sigmaâ€2 receptor. FEBS Journal, 2021, 288, 6815-6827.	2.2	6

#	Article	IF	CITATIONS
19	Entry receptor bias in evolutionarily distant HSV-1 clinical strains drives divergent ocular and nervous system pathologies. Ocular Surface, 2021, 21, 238-249.	2.2	7
20	Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264.7 Macrophages. International Journal of Molecular Sciences, 2021, 22, 7856.	1.8	18
21	OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection. Nature Communications, 2021, 12, 5401.	5.8	33
22	Protease, Growth Factor, and Heparanase-Mediated Syndecan-1 Shedding Leads to Enhanced HSV-1 Egress. Viruses, 2021, 13, 1748.	1.5	8
23	Porcine Corneal Tissue Explant to Study the Efficacy of Herpes Simplex Virus-1 Antivirals. Journal of Visualized Experiments, 2021, , .	0.2	2
24	Prophylactic treatment with BX795 blocks activation of AKT and its downstream targets to protect vaginal keratinocytes and vaginal epithelium from HSV-2 infection. Antiviral Research, 2021, 194, 105145.	1.9	7
25	Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Advances in Biological Regulation, 2021, 82, 100829.	1.4	0
26	Nanoparticles-Mediated Interventions to Prevent Herpes Simplex Virus (HSV) Entry into Susceptible Hosts. Nanotechnology in the Life Sciences, 2021, , 347-370.	0.4	1
27	Role of Tunneling Nanotubes in Viral Infection, Neurodegenerative Disease, and Cancer. Frontiers in Immunology, 2021, 12, 680891.	2.2	45
28	Nanoengineered Antiviral Fibrous Arrays with Rose-Thorn-Inspired Architectures. , 2021, 3, 1566-1571.		5
29	mTORC2 confers neuroprotection and potentiates immunity during virus infection. Nature Communications, 2021, 12, 6020.	5.8	3
30	Aptamers in Virology—A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics, 2021, 13, 1646.	2.0	7
31	Infection-Induced Porcine Ex Vivo Corneal Wound Model to Study the Efficacy of Herpes Simplex Virus-1 Entry and Replication Inhibitors. Methods in Molecular Biology, 2021, 2193, 183-196.	0.4	1
32	Heparanase-Induced Activation of AKT Stabilizes β-Catenin and Modulates Wnt/β-Catenin Signaling during Herpes Simplex Virus 1 Infection. MBio, 2021, 12, e0279221.	1.8	4
33	BX795-Organic Acid Coevaporates: Evaluation of Solid-State Characteristics, In Vitro Cytocompatibility and In Vitro Activity against HSV-1 and HSV-2. Pharmaceutics, 2021, 13, 1920.	2.0	5
34	Prior inhibition of AKT phosphorylation by BX795 can define a safer strategy to prevent herpes simplex virus-1 infection of the eye. Ocular Surface, 2020, 18, 221-230.	2.2	18
35	Pharmaceutically Acceptable Carboxylic Acid-Terminated Polymers Show Activity and Selectivity against HSV-1 and HSV-2 and Synergy with Antiviral Drugs. ACS Infectious Diseases, 2020, 6, 2926-2937.	1.8	11
36	Standalone or combinatorial phenylbutyrate therapy shows excellent antiviral activity and mimics CREB3 silencing. Science Advances, 2020, 6, .	4.7	12

#	Article	IF	CITATIONS
37	Implementation of COVID-19 Protocols and Tele-Triage in an Academic Ophthalmology Department. Journal of Academic Ophthalmology (2017), 2020, 12, e151-e158.	0.2	9
38	Heparanase, cell signaling, and viral infections. Cellular and Molecular Life Sciences, 2020, 77, 5059-5077.	2.4	38
39	Vaccines and Therapies in Development for SARS-CoV-2 Infections. Journal of Clinical Medicine, 2020, 9, 1885.	1.0	46
40	Heparanase-Regulated Syndecan-1 Shedding Facilitates Herpes Simplex Virus 1 Egress. Journal of Virology, 2020, 94, .	1.5	31
41	<i>In Vitro</i> and <i>In Vivo</i> Activity, Tolerability, and Mechanism of Action of BX795 as an Antiviral against Herpes Simplex Virus 2 Genital Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	12
42	Bacterial Pigment Prodigiosin Demonstrates a Unique Antiherpesvirus Activity That Is Mediated through Inhibition of Prosurvival Signal Transducers. Journal of Virology, 2020, 94, .	1.5	20
43	Herpes Simplex Virus Cell Entry Mechanisms: An Update. Frontiers in Cellular and Infection Microbiology, 2020, 10, 617578.	1.8	67
44	Heparanase, Heparan Sulfate and Viral Infection. Advances in Experimental Medicine and Biology, 2020, 1221, 759-770.	0.8	35
45	BX795 demonstrates potent antiviral benefits against herpes simplex Virus-1 infection of human cell lines. Antiviral Research, 2020, 180, 104814.	1.9	10
46	Wound Healing Properties of Histatin-5 and Identification of a Functional Domain Required for Histatin-5-Induced Cell Migration. Molecular Therapy - Methods and Clinical Development, 2020, 17, 709-716.	1.8	17
47	Drug-encapsulated carbon (DECON): A novel platform for enhanced drug delivery. Science Advances, 2019, 5, eaax0780.	4.7	46
48	Current and Emerging Therapies for Ocular Herpes Simplex Virus Type-1 Infections. Microorganisms, 2019, 7, 429.	1.6	59
49	CRISPR-Cas based targeting of host and viral genes as an antiviral strategy. Seminars in Cell and Developmental Biology, 2019, 96, 53-64.	2.3	22
50	An Intra-Vaginal Zinc Oxide Tetrapod Nanoparticles (ZOTEN) and Genital Herpesvirus Cocktail Can Provide a Novel Platform for Live Virus Vaccine. Frontiers in Immunology, 2019, 10, 500.	2.2	41
51	Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocular Surface, 2019, 17, 40-49.	2.2	116
52	Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cellular and Molecular Life Sciences, 2019, 76, 405-419.	2.4	83
53	An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Science Translational Medicine, 2018, 10, .	5.8	61
54	Herpesvirus-encoded microRNAs detected in human gingiva alter host cell transcriptome and regulate viral infection. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 497-508.	0.9	20

#	Article	IF	CITATIONS
55	Herpesviruses and MicroRNAs: New Pathogenesis Factors in Oral Infection and Disease?. Frontiers in Immunology, 2018, 9, 2099.	2.2	34
56	Host Enzymes Heparanase and Cathepsin L Promote Herpes Simplex Virus 2 Release from Cells. Journal of Virology, 2018, 92, .	1.5	40
57	Herpes Simplex Virus 1 Infection Promotes the Growth of a Subpopulation of Tumor Cells in Three-Dimensional Uveal Melanoma Cultures. Journal of Virology, 2018, 92, .	1.5	11
58	Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses. Frontiers in Immunology, 2018, 9, 433.	2.2	44
59	In silico prediction of cellular gene targets of herpesvirus encoded microRNAs. Data in Brief, 2018, 19, 249-255.	0.5	7
60	Cultured corneas show dendritic spread and restrict herpes simplex virus infection that is not observed with cultured corneal cells. Scientific Reports, 2017, 7, 42559.	1.6	12
61	Targeting Herpes Simplex Virus-1 gD by a DNA Aptamer Can Be an Effective New Strategy to Curb Viral Infection. Molecular Therapy - Nucleic Acids, 2017, 9, 365-378.	2.3	40
62	Viral Activation of Heparanase Drives Pathogenesis of Herpes Simplex Virus-1. Cell Reports, 2017, 20, 439-450.	2.9	74
63	Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 219-230.	1.7	138
64	Emerging Roles of Heparanase in Viral Pathogenesis. Pathogens, 2017, 6, 43.	1.2	42
65	Effects of histatin-1 peptide on human corneal epithelial cells. PLoS ONE, 2017, 12, e0178030.	1.1	27
66	Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Molecular Vision, 2017, 23, 26-38.	1.1	14
67	Extended Release of an Anti–Heparan Sulfate Peptide From a Contact Lens Suppresses Corneal Herpes Simplex Virus-1 Infection. , 2016, 57, 169.		39
68	Genital Herpes: Insights into Sexually Transmitted Infectious Disease. Microbial Cell, 2016, 3, 437-449.	1.4	45
69	Filopodia and Viruses: An Analysis of Membrane Processes in Entry Mechanisms. Frontiers in Microbiology, 2016, 7, 300.	1.5	63
70	Liposome-Mediated Herpes Simplex Virus Uptake Is Glycoprotein-D Receptor-Independent but Requires Heparan Sulfate. Frontiers in Microbiology, 2016, 7, 973.	1.5	10
71	Intravaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes. Journal of Immunology, 2016, 196, 4566-4575.	0.4	122
72	Could zinc oxide tetrapod nanoparticles be used as an effective immunotherapy against HSV-2?. Nanomedicine, 2016, 11, 2239-2242.	1.7	6

#	Article	IF	CITATIONS
73	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
74	Basal Autophagy Is Required for Herpes simplex Virus-2 Infection. Scientific Reports, 2015, 5, 12985.	1.6	35
75	Diversity of Heparan Sulfate and HSV Entry: Basic Understanding and Treatment Strategies. Molecules, 2015, 20, 2707-2727.	1.7	42
76	Semaphorin 7a in Herpetic Neurotrophic Keratitis. Investigative Ophthalmology and Visual Science, 2015, 56, 1108-1108.	3.3	2
77	Long-Term Outcomes and Prognostic Factors of Trabeculectomy following Intraocular Bevacizumab Injection for Neovascular Glaucoma. PLoS ONE, 2015, 10, e0135766.	1.1	24
78	Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. Macromolecules, 2015, 48, 959-966.	2.2	51
79	Characterization of a Proteolytically Stable D-Peptide That Suppresses Herpes Simplex Virus 1 Infection: Implications for the Development of Entry-Based Antiviral Therapy. Journal of Virology, 2015, 89, 1932-1938.	1.5	24
80	A Role for 3- <i>O</i> -Sulfated Heparan Sulfate in Promoting Human Cytomegalovirus Infection in Human Iris Cells. Journal of Virology, 2015, 89, 5185-5192.	1.5	18
81	Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nature Communications, 2015, 6, 6985.	5.8	128
82	Autophagy Stimulation Abrogates Herpes simplex Virus-1 Infection. Scientific Reports, 2015, 5, 9730.	1.6	53
83	Cell entry mechanisms of HSV: what we have learned in recent years. Future Virology, 2015, 10, 1145-1154.	0.9	163
84	Corneal lymphangiogenesis in herpetic stromal keratitis. Survey of Ophthalmology, 2015, 60, 60-71.	1.7	27
85	Herpes Simplex Virus-1 Fine-Tunes Host's Autophagic Response to Infection: A Comprehensive Analysis in Productive Infection Models. PLoS ONE, 2015, 10, e0124646.	1.1	13
86	Inhibition of Myosin Light Chain Kinase Can be Targeted for the Development of New Therapies against Herpes Simplex Virus Type-1 Infection. Antiviral Therapy, 2014, 19, 15-29.	0.6	14
87	Zebrafish 3-O-Sulfotransferase-4 Generated Heparan Sulfate Mediates HSV-1 Entry and Spread. PLoS ONE, 2014, 9, e87302.	1.1	16
88	Comprehensive Analysis of Herpes Simplex Virus 1 (HSV-1) Entry Mediated by Zebrafish 3- <i>O</i> -Sulfotransferase Isoforms: Implications for the Development of a Zebrafish Model of HSV-1 Infection. Journal of Virology, 2014, 88, 12915-12922.	1.5	17
89	Zebrafish: Modeling for Herpes Simplex Virus Infections. Zebrafish, 2014, 11, 17-25.	0.5	34
90	Role of heparan sulfate in ocular diseases. Experimental Eye Research, 2013, 110, 1-9.	1.2	29

#	Article	IF	CITATIONS
91	Authors' Response. Survey of Ophthalmology, 2013, 58, 287.	1.7	0
92	Zebrafish encoded 3-O-sulfotransferase-2 generated heparan sulfate serves as a receptor during HSV-1 entry and spread. Biochemical and Biophysical Research Communications, 2013, 432, 672-676.	1.0	11
93	Glycoprotein targeted therapeutics: a new era of antiâ€herpes simplex virusâ€1 therapeutics. Reviews in Medical Virology, 2013, 23, 194-208.	3.9	54
94	Recent advances in vaccine development for herpes simplex virus types I and II. Human Vaccines and Immunotherapeutics, 2013, 9, 729-735.	1.4	43
95	Exploiting Herpes Simplex Virus Entry for Novel Therapeutics. Viruses, 2013, 5, 1447-1465.	1.5	27
96	Increased axonal expression of nectin-1 in multiple sclerosis plaques. Neurological Sciences, 2013, 34, 465-469.	0.9	4
97	An Investigative Peptide–Acyclovir Combination to Control Herpes Simplex Virus Type 1 Ocular Infection. , 2013, 54, 6373.		25
98	Susceptibility of Human Iris Stromal Cells to Herpes Simplex Virus 1 Entry. Journal of Virology, 2013, 87, 4091-4096.	1.5	11
99	Members of 3-O-Sulfotransferases (3-OST) Family: A Valuable Tool from Zebrafish to Humans for Understanding Herpes Simplex Virus Entry. The Open Virology Journal, 2013, 7, 5-11.	1.8	12
100	Role of Filopodia in HSV-1 Entry into Zebrafish 3-O-Sulfotransferase-3-Expressing Cells. The Open Virology Journal, 2013, 7, 41-48.	1.8	12
101	A 3- <i>O</i> -Sulfated Heparan Sulfate Binding Peptide Preferentially Targets Herpes Simplex Virus 2-Infected Cells. Journal of Virology, 2012, 86, 6434-6443.	1.5	37
102	Nonprofessional Phagocytosis Can Facilitate Herpesvirus Entry into Ocular Cells. Clinical and Developmental Immunology, 2012, 2012, 1-8.	3.3	20
103	Unraveling the cell entry mechanisms of HSV: therapeutic potential?. Future Virology, 2012, 7, 427-430.	0.9	1
104	Contortrostatin, a Homodimeric Disintegrin Isolated from Snake Venom Inhibits Herpes Simplex Virus Entry and Cell Fusion. Antiviral Therapy, 2012, 17, 1319-1326.	0.6	12
105	Role of heparan sulfate in sexually transmitted infections. Glycobiology, 2012, 22, 1402-1412.	1.3	63
106	Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Research, 2012, 96, 363-375.	1.9	167
107	Herpes Simplex Epithelial and Stromal Keratitis: An Epidemiologic Update. Survey of Ophthalmology, 2012, 57, 448-462.	1.7	368
108	Tin Oxide Nanowires Suppress Herpes Simplex Virus-1 Entry and Cell-to-Cell Membrane Fusion. PLoS ONE, 2012, 7, e48147.	1.1	44

#	Article	IF	CITATIONS
109	Early Events in Herpes Simplex Virus Lifecycle with Implications for an Infection of Lifetime. The Open Virology Journal, 2012, 6, 1-6.	1.8	30
110	Anti-heparan Sulfate Peptides That Block Herpes Simplex Virus Infection in Vivo. Journal of Biological Chemistry, 2011, 286, 25406-25415.	1.6	96
111	Chronic Progressive Deficits in Neuron Size, Density and Number in the Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus. Brain Pathology, 2011, 21, 583-593.	2.1	12
112	Herpes simplex virus infects most cell types in vitro: clues to its success. Virology Journal, 2011, 8, 481.	1.4	129
113	Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Research, 2011, 92, 305-312.	1.9	188
114	Corneal latency and transmission of herpes simplex virus-1. Future Virology, 2011, 6, 101-108.	0.9	35
115	Syndecan-1 and syndecan-2 play key roles in herpes simplex virus type-1 infection. Journal of General Virology, 2011, 92, 733-743.	1.3	70
116	An Important Role for Syndecan-1 in Herpes Simplex Virus Type-1 Induced Cell-to-Cell Fusion and Virus Spread. PLoS ONE, 2011, 6, e25252.	1.1	24
117	Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry. Virology, 2010, 397, 389-398.	1.1	56
118	<i>In vitro</i> antiviral activity of neem (<i>Azardirachta indica</i> L.) bark extract against herpes simplex virus typeâ€1 infection. Phytotherapy Research, 2010, 24, 1132-1140.	2.8	96
119	The role of herpesviruses in ocular infections. Virus Adaptation and Treatment, 2010, , 115.	1.5	4
120	Phosphoinositide 3 kinase signalling may affect multiple steps during herpes simplex virus type-1 entry. Journal of General Virology, 2010, 91, 3002-3009.	1.3	48
121	A role for heparan sulfate in viral surfing. Biochemical and Biophysical Research Communications, 2010, 391, 176-181.	1.0	93
122	Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells. Current Eye Research, 2010, 35, 445-450.	0.7	34
123	Antiviral Activity of Phytochemicals: A Current Perspective. , 2010, , 421-468.		25
124	HSV-1 infection of human corneal epithelial cells: receptor-mediated entry and trends of re-infection. Molecular Vision, 2010, 16, 2476-86.	1.1	44
125	Expression of Herpes Virus Entry Mediator (HVEM) in the Cornea and Trigeminal Ganglia of Normal and HSV-1 Infected Mice. Current Eye Research, 2009, 34, 896-904.	0.7	22
126	A Novel Function of Heparan Sulfate in the Regulation of Cell-Cell Fusion. Journal of Biological Chemistry, 2009, 284, 29654-29665.	1.6	25

#	Article	IF	CITATIONS
127	Role of Nectin-1, HVEM, and PILR-α in HSV-2 Entry into Human Retinal Pigment Epithelial Cells. , 2009, 50, 2878.		29
128	A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Research, 2009, 84, 67-75.	1.9	37
129	Viral entry mechanisms: simplicity drives complexity. FEBS Journal, 2009, 276, 7205-7205.	2.2	0
130	Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS Journal, 2009, 276, 7228-7236.	2.2	227
131	An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate. Biochemical and Biophysical Research Communications, 2009, 390, 382-387.	1.0	10
132	INTRAVITREAL ALEMTUZUMAB PENETRATES FULL-THICKNESS RETINA IN RABBIT EYES. Retina, 2009, 29, 1532-1534.	1.0	3
133	The importance of heparan sulfate in herpesvirus infection. Virologica Sinica, 2008, 23, 383-393.	1.2	63
134	Nectin-1 (HveC) is expressed at high levels in neural subtypes that regulate radial migration of cortical and cerebellar neurons of the developing human and murine brain. Journal of NeuroVirology, 2008, 14, 164-172.	1.0	12
135	Role for nectinâ€1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells. FEBS Journal, 2008, 275, 5272-5285.	2.2	48
136	Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilitate viral spread. Neuroscience Letters, 2008, 440, 113-118.	1.0	59
137	Using a 3- <i>O</i> -Sulfated Heparin Octasaccharide To Inhibit the Entry of Herpes Simplex Virus Type 1. Biochemistry, 2008, 47, 5774-5783.	1.2	117
138	Antiviral Activity of Phytochemicals: A Comprehensive Review. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1106-1133.	1.1	149
139	HVEM and Nectin-1 Are the Major Mediators of Herpes Simplex Virus 1 (HSV-1) Entry into Human Conjunctival Epithelium. , 2008, 49, 4026.		62
140	Herpes simplex virus type 2 entry into cultured human corneal fibroblasts is mediated by herpesvirus entry mediator. Journal of General Virology, 2007, 88, 2106-2110.	1.3	21
141	Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. Journal of General Virology, 2007, 88, 1075-1079.	1.3	38
142	RITUXIMAB PENETRATES FULL-THICKNESS RETINA IN CONTRAST TO TISSUE PLASMINOGEN ACTIVATOR CONTROL. Retina, 2007, 27, 1071-1073.	1.0	31
143	Role of 3â€ <i>O</i> â€sulfated heparan sulfate in virusâ€induced polykaryocyte formation. FEBS Letters, 2007, 581, 4468-4472.	1.3	23
144	Viral Inhibition Studies on Sulfated Lignin, a Chemically Modified Biopolymer and a Potential Mimic of Heparan Sulfate. Biomacromolecules, 2007, 8, 1759-1763.	2.6	49

#	Article	IF	CITATIONS
145	Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. Journal of NeuroVirology, 2007, 13, 416-425.	1.0	80
146	Latency Strategies of Alphaherpesviruses: Herpes Simplex Virus and Varicella-Zoster Virus Latency in Neurons. , 2007, , 1-36.		9
147	Expression of Nectin-1 in Normal and Herpes Simplex Virus Type 1-Infected Murine Brain. Applied Immunohistochemistry and Molecular Morphology, 2006, 14, 341-347.	0.6	19
148	A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology, 2006, 346, 452-459.	1.1	71
149	A novel role for phagocytosis-like uptake in herpes simplex virus entry. Journal of Cell Biology, 2006, 174, 1009-1021.	2.3	228
150	Role for 3- O -Sulfated Heparan Sulfate as the Receptor for Herpes Simplex Virus Type 1 Entry into Primary Human Corneal Fibroblasts. Journal of Virology, 2006, 80, 8970-8980.	1.5	111
151	Nectin-1 Expression in the Normal and Neoplastic Human Uterine Cervix. Archives of Pathology and Laboratory Medicine, 2006, 130, 1193-1195.	1.2	16
152	A novel role for phagocytosis-like uptake in herpes simplex virus entry. Journal of Experimental Medicine, 2006, 203, i25-i25.	4.2	0
153	Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochemical Journal, 2005, 385, 451-459.	1.7	103
154	Spinoculation of heparan sulfate deficient cells enhances HSV-1 entry, but does not abolish the need for essential glycoproteins in viral fusion. Journal of Virological Methods, 2005, 128, 104-112.	1.0	19
155	A Role for Herpesvirus Entry Mediator as the Receptor for Herpes Simplex Virus 1 Entry into Primary Human Trabecular Meshwork Cells. Journal of Virology, 2005, 79, 13173-13179.	1.5	54
156	A role for 3-O-sulfotransferase isoform-4 in assisting HSV-1 entry and spread. Biochemical and Biophysical Research Communications, 2005, 338, 930-937.	1.0	61
157	Structural Characterization of a Serendipitously Discovered Bioactive Macromolecule, Lignin Sulfate. Biomacromolecules, 2005, 6, 2822-2832.	2.6	25
158	Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. Journal of Cell Biology, 2004, 166, 1069-1079.	2.3	83
159	A role for 3-O-sulfated heparan sulfate in cell fusion induced by herpes simplex virus type 1. Journal of General Virology, 2004, 85, 805-809.	1.3	77
160	Herpes simplex virus entry receptor nectin-1 is widely expressed in the murine eye. Current Eye Research, 2004, 29, 303-309.	0.7	41
161	Cellular expression of gH confers resistance to herpes simplex virus type-1 entry. Virology, 2003, 312, 14-24.	1.1	28
162	Mutations in the N Termini of Herpes Simplex Virus Type 1 and 2 gDs Alter Functional Interactions with the Entry/Fusion Receptors HVEM, Nectin-2, and 3- O -Sulfated Heparan Sulfate but Not with Nectin-1. Journal of Virology, 2003, 77, 9221-9231.	1.5	107

#	Article	IF	CITATIONS
163	Heparan Sulfate 3-O-Sulfotransferase Isoform 5 Generates Both an Antithrombin-binding Site and an Entry Receptor for Herpes Simplex Virus, Type 1. Journal of Biological Chemistry, 2002, 277, 37912-37919.	1.6	153
164	Portable sulphotransferase domain determines sequence specificity of heparan sulphate 3-O-sulphotransferases. Biochemical Journal, 2001, 359, 235.	1.7	27
165	Portable sulphotransferase domain determines sequence specificity of heparan sulphate 3-O-sulphotransferases. Biochemical Journal, 2001, 359, 235-241.	1.7	34
166	Transcription from the Gene Encoding the Herpesvirus Entry Receptor Nectin-1 (HveC) in Nervous Tissue of Adult Mouse. Virology, 2001, 287, 301-309.	1.1	56
167	Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. Journal of Clinical Investigation, 2001, 108, 503-510.	3.9	402
168	Striking Similarity of Murine Nectin-1α to Human Nectin-1α (HveC) in Sequence and Activity as a Glycoprotein D Receptor for Alphaherpesvirus Entry. Journal of Virology, 2000, 74, 11773-11781.	1.5	81
169	A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry. Cell, 1999, 99, 13-22.	13.5	948
170	The Murine Homolog (Mph) of Human Herpesvirus Entry Protein B (HveB) Mediates Entry of Pseudorabies Virus but Not Herpes Simplex Virus Types 1 and 2. Journal of Virology, 1999, 73, 4493-4497.	1.5	55
171	Flagellar Motor-switch Binding Face of CheY and the Biochemical Basis of Suppression by CheY Mutants That Compensate for Motor-switch Defects in Escherichia coli. Journal of Biological Chemistry, 1998, 273, 23993-23999.	1.6	29
172	Mutations Leading to Altered CheA Binding Cluster on a Face of CheY. Journal of Biological Chemistry, 1995, 270, 24414-24419.	1.6	35