Vanessa F Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3851098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	5.5	466
2	Advances in Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700845.	3.9	453
3	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	2.0	196
4	Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications. Smart Materials and Structures, 2011, 20, 087002.	1.8	116
5	Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Composites Part B: Engineering, 2015, 72, 130-136.	5.9	96
6	Optimized SU-8 Processing for Low-Cost Microstructures Fabrication without Cleanroom Facilities. Micromachines, 2014, 5, 738-755.	1.4	94
7	Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. Journal of Membrane Science, 2018, 564, 842-851.	4.1	68
8	Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. European Polymer Journal, 2011, 47, 2442-2450.	2.6	66
9	Improving the optical and electroactive response of poly(vinylidene fluoride–trifluoroethylene) spin-coated films for sensor and actuator applications. Smart Materials and Structures, 2012, 21, 085020.	1.8	56
10	Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. Sensors and Actuators A: Physical, 2013, 192, 76-80.	2.0	56
11	Nonsolvent induced phase separation preparation of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf content and mechanical properties. Materials and Design, 2015, 88, 390-397.	50 347 To 3.3	l (fluoride-co 51
12	A green solvent strategy for the development of piezoelectric poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 104, 183-189.	f 50 307 To 3.3	d (fluoride‑ 42
13	Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water. Materials Chemistry and Physics, 2016, 183, 430-438.	2.0	41
14	Smart-Optical Detector CMOS Array for Biochemical Parameters Analysis in Physiological Fluids. IEEE Transactions on Industrial Electronics, 2008, 55, 3192-3200.	5.2	30
15	Polymer-based acoustic streaming for improving mixing and reaction times in microfluidic applications. RSC Advances, 2014, 4, 4292-4300.	1.7	28
16	Lab-on-a-Chip With β-Poly(Vinylidene Fluoride) Based Acoustic Microagitation. IEEE Transactions on Biomedical Engineering, 2010, 57, 1184-1190.	2.5	25
17	Electroactive Polymers as Actuators. , 2017, , 319-352.		25
18	Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications. Ferroelectrics, 2012, 430, 103-107.	0.3	20

#	Article	IF	CITATIONS
19	From superhydrophobic- to superhydrophilic-patterned poly(vinylidene fluoride-co) Tj ETQq1 1 0.784314 rgBT /O Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1802-1810.	verlock 10 2.4	Tf 50 747 To 20
20	Cellular Interaction of Bone Marrow Mesenchymal Stem Cells with Polymer and Hydrogel 3D Microscaffold Templates. ACS Applied Materials & Interfaces, 2022, 14, 13013-13024.	4.0	20
21	Poly(vinylidene fluoride-trifluoroethylene) Porous Films: Tailoring Microstructure and Physical Properties by Solvent Casting Strategies. Soft Materials, 2015, 13, 243-253.	0.8	19
22	Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Materials, 2019, 21, 124-135.	9.5	17
23	Tailoring Electrospun Poly(<scp>l</scp> -lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Interfaces, 2020, 12, 60-69.	4.0	16
24	Tailoring microstructure and physical properties of poly(vinylidene fluoride–hexafluoropropylene) porous films. Journal of Materials Science, 2015, 50, 5047-5058.	1.7	14
25	Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds. ACS Applied Bio Materials, 2019, 2, 1591-1602.	2.3	14
26	Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. International Journal of Molecular Sciences, 2020, 21, 8352.	1.8	14
27	Comparative study of sol–gel methods for the facile synthesis of tailored magnetic silica spheres. Materials Research Express, 2016, 3, 075402.	0.8	12
28	Lab-on-a-chip technology and microfluidics. , 2019, , 3-36.		11
29	Highly effective clean-up of magnetic nanoparticles using microfluidic technology. Sensors and Actuators B: Chemical, 2018, 255, 2384-2391.	4.0	10
30	Ultrasonic Transducer Based on β-PVDF for Fluidic Microagitation in a Lab-on-a-Chip Device. Advances in Science and Technology, 2008, 57, 99-104.	0.2	9
31	Fluorinated Polymer Membranes as Advanced Substrates for Portable Analytical Systems and Their Proof of Concept for Colorimetric Bioassays. ACS Applied Materials & Interfaces, 2021, 13, 18065-18076.	4.0	9
32	Evaluation of the Physicochemical Properties and Active Response of Piezoelectric Poly(vinylidene) Tj ETQq0 0 0 r Chemistry C, 2018, 122, 11433-11441.	gBT /Over 1.5	lock 10 Tf 50 8
33	Tailoring electroactive poly(vinylidene fluoride 0-trifluoroethylene) microspheres by a nanoprecipitation method. Materials Letters, 2020, 261, 127018.	1.3	8
34	Layer-by-layer fabrication of highly transparent polymer based piezoelectric transducers. Materials Research Express, 2018, 5, 065313.	0.8	7
35	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities. , 2020, , 1-43.		7
36	Solid Magnetoliposomes as Multi-Stimuli-Responsive Systems for Controlled Release of Doxorubicin: Assessment of Lipid Formulations. Biomedicines, 2022, 10, 1207.	1.4	7

VANESSA F CARDOSO

#	Article	IF	CITATIONS
37	Biodegradable polymer-based microfluidic membranes for sustainable point-of-care devices. Chemical Engineering Journal, 2022, 448, 137639.	6.6	7
38	Metamorphic biomaterials. , 2017, , 69-99.		6
39	Natural based reusable materials for microfluidic substrates: The silk road towards sustainable portable analytical systems. Applied Materials Today, 2022, 28, 101507.	2.3	6
40	Patterned separator membranes with pillar surface microstructures for improved battery performance. Journal of Colloid and Interface Science, 2021, 596, 158-172.	5.0	4
41	Piezoelectric β-PVDF polymer films as fluid acoustic microagitator. , 2008, , .		3
42	Biological microdevice with fluidic acoustic streaming for measuring uric acid in human saliva. , 2009, 2009, 5879-82.		3
43	Heating of samples by acoustic microagitation for improving reaction of biological fluids. , 2010, , .		3
44	Lab-on-a-chip using acoustic streaming for mixing and pumping fluids. , 2011, , .		3
45	Micro- and nanostructured piezoelectric polymers. Frontiers of Nanoscience, 2019, , 35-65.	0.3	3
46	Solution processing of piezoelectric unconventional structures. , 2022, , 375-439.		3
47	Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements. Science and Technology of Advanced Materials, 2010, 11, 045006.	2.8	2
48	Design and fabrication of piezoelectric microactuators based on β-poly (vinylidene fluoride) films for microfluidic applications. , 2010, 2010, 903-6.		2
49	Magnetic PDMS Microparticles for Biomedical and Energy Applications. Lecture Notes in Computational Vision and Biomechanics, 2019, , 578-584.	0.5	2
50	Effect of Polymer Dissolution Temperature and Conditioning Time on the Morphological and Physicochemical Characteristics of Poly(Vinylidene Fluoride) Membranes Prepared by Non-Solvent Induced Phase Separation. Polymers, 2021, 13, 4062.	2.0	2
51	Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres. Colloids and Surfaces B: Biointerfaces, 2017, 157, 48-55.	2.5	1
52	Gold coated SU-8-based microelectrodes for in vivo electrophysiological studies: Rapid prototyping protocol-specific microelectrode designs. , 2011, , .		0