
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3851087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz. Scripta Materialia, 2002, 46, 157-162.	5.2	168
2	Specimen size effects on gigacycle fatigue properties of high-strength steel under ultrasonic fatigue testing. Scripta Materialia, 2008, 58, 1014-1017.	5.2	103
3	Notable size effects on very high cycle fatigue properties of high-strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5234-5240.	5.6	95
4	Gigacycle fatigue properties of Ti–6Al–4V alloy under tensile mean stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 135-140.	5.6	81
5	Gigacycle fatigue properties of 1800 MPa class spring steels. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 159-167.	3.4	75
6	Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1722-1730.	2.2	74
7	The effect of frequency on the giga ycle fatigue properties of a Ti–6Al–4V alloy. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 599-605.	3.4	63
8	1010-cycle fatigue properties of 1800 MPa-class JIS-SUP7 spring steel. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 641-645.	3.4	59
9	Inclusion-controlled fatigue properties of 1800 MPA-class spring steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3737-3744.	2.2	47
10	Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPA-class low-alloy steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3421-3431.	2.2	45
11	A novel inclusion inspection method employing 20 kHz fatigue testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2517-2526.	2.2	44
12	Size effects in gigacycle fatigue of high-strength steel under ultrasonic fatigue testing. Procedia Engineering, 2010, 2, 485-490.	1.2	44
13	Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. International Journal of Hydrogen Energy, 2015, 40, 719-728.	7.1	43
14	Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5717-5732.	2.2	37
15	Visualization of internal small fatigue crack growth. Materials Letters, 2013, 112, 139-141.	2.6	34
16	AFM and SEM observation on mechanism of fatigue crack growth in an Fe-Si single crystal. International Journal of Fracture, 2002, 113, 213-231.	2.2	32
17	Effects of carbon and phosphorus addition on the fatigue properties of ultrafine-grained steels. Scripta Materialia, 2005, 52, 1163-1167.	5.2	31
18	Effect of mean stress on fatigue properties of 1800MPa-class spring steels. Materials & Design, 2011, 32, 1101-1107.	5.1	31

#	Article	IF	CITATIONS
19	Gigacycle fatigue in high strength steels. Science and Technology of Advanced Materials, 2019, 20, 643-656.	6.1	31
20	High-temperature ultrasonic fatigue testing of single-crystal superalloys. Materials Letters, 2012, 69, 1-3.	2.6	30
21	Effect of Frequency on Giga-Cycle Fatigue Properties for Low-Temperature-Tempered SNCM439 Steel Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68, 477-483.	0.2	23
22	Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1715-1723.	2.2	23
23	Effects of Inclusion and ODA Sizes on Gigacycle Fatigue Properties of High-strength Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 630-638.	0.4	22
24	Gigacycle Fatigue Properties of Hydrogen-Charged JIS-SCM440 Low-Alloy Steel Under Ultrasonic Fatigue Testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2248-2256.	2.2	21
25	Catalogue of NIMS fatigue data sheets. Science and Technology of Advanced Materials, 2019, 20, 1055-1072.	6.1	21
26	Giga-Cycle Fatigue Properties for 1800MPa-Class Spring Steels Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2001, 67, 1988-1995.	0.2	20
27	Ultrasonic fatigue testing on notched and smooth specimens of ultrafine-grained steel. Materials & Design, 2012, 37, 515-520.	5.1	20
28	Small internal fatigue crack growth rate measured by beach marks. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 260-266.	5.6	18
29	A new model for predicting the gigacycle fatigue strength of high-strength steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 445-452.	5.6	18
30	Title is missing!. International Journal of Fracture, 1998, 94, 17-31.	2.2	16
31	Fatigue Strength of Ultrafine Ferrite-Cementite Steels and Effects of Strengthening Mechanisms. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2984-2991.	2.2	16
32	10 ¹⁰ -cycle Fatigue Properties for SUP7 Spring Steels Tempered at 430 and 500°C. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002, 88, 786-792.	0.4	15
33	Gigacycle fatigue data sheets for advanced engineering materials. Science and Technology of Advanced Materials, 2007, 8, 545-551.	6.1	15
34	Effect of frequency and biofuel E85 on very high cycle fatigue behaviour of the high strength steel X90CrMoV18. International Journal of Fatigue, 2014, 60, 90-100.	5.7	15
35	Title is missing!. International Journal of Fracture, 1997, 87, 309-329.	2.2	14
36	The Effect of Hydrogen on Fatigue Properties for Wrok-Hardened SUS 316 L Austenitic Stainless Steel. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 1335-1342.	0.2	14

#	Article	IF	CITATIONS
37	Specimen Size Effect on Gigacycle Fatigue Properties of SUP7 Spring Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2009, 95, 426-433.	0.4	14
38	Effect of Hydrogen on Fatigue Crack Growth Properties of SCM435 Steel Used for Storage Cylinder in Hydrogen Stations. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1030-1040.	0.2	14
39	Cyclic Yield Characterization for Low-Carbon Steel with HAZ Microstructures. Materials Transactions, 2019, 60, 207-212.	1.2	14
40	Effect of Hydrogen on the Gigacycle Fatigue Properties of Low Alloy Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2007, 93, 600-606.	0.4	14
41	Significance of Size and Type of Inclusions on Giga-cycle Fatigue in High-strength Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 711-717.	0.4	14
42	Effects of Strengthening Mechanisms on Fatigue Properties of Ultrafine Ferrite-Cementite Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 46-52.	0.4	14
43	Effect of microstructure of simulated heatâ€affected zone on low―to highâ€cycle fatigue properties of lowâ€carbon steels. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1239-1249.	3.4	12
44	Nanoscopic measurement of local plastic deformation for a tempered martensitic steel by atomic force microscopy. Materials Letters, 2003, 57, 3037-3042.	2.6	11
45	Effect of Frequency on Giga-Cycle Fatigue Properties for Ti-6Al-4V Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 1124-1130.	0.2	11
46	Ultrasonic Fatigue Properties of High-strength Steel Under Tensile Mean Stress. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2005, 71, 1201-1206.	0.2	11
47	Inclusion Inspection Method in Ultra-sonic Fatigue Test. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002, 88, 643-650.	0.4	11
48	1010-Cycles Fatigue Properties for a Series of SUP 7 Spring Steels. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 1050-1057.	0.2	10
49	The Role of Crystallographic Texture and Basal Plane Slip on Microstructurally Short Fatigue Crack Initiation and Propagation in Forged Billet and Rolled Bar Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3821-3838.	2.2	10
50	In-situ observation of microstructurally small fatigue crack initiation and growth behaviors of additively-manufactured alloy 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142682.	5.6	10
51	Gigacycle Fatigue Properties of Hydrogen Charged High Strength Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 494-501.	0.4	9
52	Development of Microstructurally Small Fatigue Crack Initiation and Growth Evaluation Method Using Automatic <i>In-situ</i> Observation System with Digital Image Correlation Technique. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 105-111.	0.4	9
53	Evaluation of Internal Fatigue Crack Growth Rate Based on a Beach Mark Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 228-235.	0.4	9
54	The Effect of Modified-ausforming on Giga-cycle Fatigue Properties in Si-Mn Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 1082-1089.	0.4	9

#	Article	IF	CITATIONS
55	Development of a Method for Evaluating Microstructurally Small Fatigue Crack Initiation and Growth by Using an Automatic System for <i>In Situ</i> Observation in Conjunction with a Digital-Image Correlation Technique. ISIJ International, 2020, 60, 2090-2096.	1.4	9
56	Standardization of an ultrasonic fatigue testing method in Japan. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 2415-2420.	3.4	9
57	High-Cycle Fatigue Properties of Modified-Ausformed SCM440 Steels. 1st Report. Fatigue Properties of 1600MPa-Class Quenched and Tempered Steels and Modified-Ausformed and Tempered Steels Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68. 41-48.	0.2	8
58	Atomic Force Microscopy of Local Plastic Deformation for Tempered Martensite in a Medium-carbon Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 354-361.	0.4	8
59	Effect of Stress Ratio on Fatigue Properties for Ti-6Al-4V Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2007, 93, 309-316.	0.4	8
60	Gigacycle Fatigue Properties of Double-Melted SCM440 Steel and Size Effects. ISIJ International, 2014, 54, 1436-1442.	1.4	8
61	Microstructurally small fatigue crack initiation behavior of fine and coarse grain simulated heat-affected zone microstructures in low carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142363.	5.6	8
62	Molecular dynamics study on low temperature brittleness in tungsten single crystals. International Journal of Fracture, 2001, 107, 139-158.	2.2	7
63	10 ¹¹ Gigacycle Fatigue Properties of High-strength Steel. ISIJ International, 2021, 61, 396-400.	1.4	7
64	Gigacycle fatigue of high-strength steel caused by MnS inclusions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141840.	5.6	7
65	Ultrasonic Fatigue Testing with Dumbbell-type Specimens Having a Straight Part. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 957-964.	0.2	6
66	Fatigue Properties of Nitrided Ultrafine Ferrite-Cementite Steels under Rotating Bending Fatigue Testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2068-2076.	2.2	6
67	Fatigue Process Evaluation of Ultrasonic Fatigue Testing in High Strength Steel Analyzed by Acoustic Emission and Non-Linear Ultrasonic. Materials Transactions, 2010, 51, 1404-1408.	1.2	6
68	Development of Observation Method for Tempered Martensite Microstructure Using Chemical Mechanical Polishing Technique. Materials Transactions, 2005, 46, 2443-2448.	1.2	5
69	Gigacycle Fatigue Properties of V-Added Steel with an Application of Modified Ausforming. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 337-344.	0.4	5
70	Effect of Stress Ratio on Giga-cycle Fatigue Properties for Ti–6Al–4V Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 36-41.	0.4	5
71	Discussion for Predictions of Gigacycle Fatigue Strength in High-strength Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 494-500.	0.4	5
72	Effect of Tensile Strength and Microstructure on Notch-fatigue Properties of Ultrafine-grained Steels. ISIJ International, 2012, 52, 910-914.	1.4	5

#	Article	IF	CITATIONS
73	Fine-grained Ferritic Steels without Upper/Lower Yielding. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 162-169.	0.4	5
74	Gigacycle Fatigue Properties of Double-Melted SCM440 Steel and Size Effects. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 373-379.	0.4	5
75	Proposal for Predictions of Gigacycle Fatigue Strength in High-strength Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 415-422.	0.4	4
76	Evaluation Method for Small Fatigue Crack Growth Life of Low Carbon Steel with Fine Grain HAZ Microstructure Simulated with Heat Treatment. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 1179-1188.	0.4	4
77	Giga-cycle Fatigue Properties of Induction Hardened 0.40% C Carbon Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2007, 93, 775-781.	0.4	4
78	Gigacycle Fatigue Properties of Modified-ausformed V-added Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 390-396.	0.4	4
79	Fatigue Properties of Plasma Nitrided Ultrafine Ferrite-Cementite Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 523-529.	0.4	4
80	High-Cycle Fatigue Properties of Modified-Ausformed SCM 440 Steels. 2nd Report. Fatigue Properties of 1600 MPa and 2000 MPa-Class Modified-Ausformed and Tempered Steels Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68, 1344-1351.	0.2	3
81	Fatigue Properties of Extruded AZ61 and AZ31 Magnesium Alloys. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1643-1650.	0.2	3
82	Fatigue Properties of an Ultrafine-Grained Steel Processed by Warm Tempforming. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78, 923-927.	0.2	3
83	Development of High-Temperature Ultrasonic Fatigue Testing System. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78, 718-727.	0.2	3
84	Gigacycle Fatigue Fracture of Low Strength Carbon Steel, Tested using a Simulated Heat Affected Zone Microstructure. ISIJ International, 2019, 59, 1926-1928.	1.4	3
85	NIMS fatigue data sheet on gigacycle fatigue properties of A6061-T6 (Al-1.0Mg-0.6Si) aluminium alloy at high stress ratios. Science and Technology of Advanced Materials Methods, 2022, 2, 232-249.	1.3	3
	An Investigation of Fatigue Crack Growth Mechanism on the basis of Observations with AFM and SEM		

#	Article	IF	CITATIONS
91	Gigacycle fatigue properties of SCM435 steel used for storage cylinder in hydrogen station. Transactions of the JSME (in Japanese), 2015, 81, 14-00433-14-00433.	0.2	2
92	Effect of Various Factors on Fatigue Properties of Nitrided Ultrafine Ferrite-Cementite Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2009, 95, 79-85.	0.4	2
93	Effect of Mn Contents on Fatigue Properties of Plasma-Nitrided Fe-C-Mn Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 69-74.	0.4	2
94	NIMS fatigue data sheet on gigacycle fatigue properties of Scr420 (0.20C-1.05Cr) carburizing steel for machine structural use. Science and Technology of Advanced Materials Methods, 2022, 2, 222-231.	1.3	2
95	10 ¹¹ -cycle Gigacycle Fatigue Properties of High-strength Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 1173-1178.	0.4	1
96	Study on Giga-Cycle Fatigue Properties and Non-Propagating Fatigue Crack for A5083P-O Aluminum Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 672-678.	0.2	1
97	Simulation of Crack Propagation with (Molecular Dynamics+Micromechanics) Model. 1st Report. Proposal and Examination of a New Model Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 725-731.	0.2	0
98	Simulation of Crack Propagation with(Molecular Dynamics+Micromechanics) Model (2nd Report,) Tj ETQq0 0 0 Society of Mechanical Engineers, Part A, 1998, 64, 305-311.	rgBT /Ove 0.2	rlock 10 Tf 50 0
99	Simulation of Crack Propagation with (Molecular Dynamics+Micromechanics) Model. 3rd Report, Evaluation of Fracture Toughness and Comparison with Experimental Results Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2000, 66, 830-836.	0.2	Ο
100	Frequency Effects on Gigacycle Fatigue Properties of High-Strength Steels. , 2004, , 145.		0
101	Development of Observation Method using Chemical Mechanical Polishing Technique for a Tempered Martensite Microstructure. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 899-903.	0.4	Ο
102	OS1508 The Effect of Hydrogen on Fatigue Properties for Work-Hardened SUS316L Austenitic Stainless Steel. The Proceedings of the Materials and Mechanics Conference, 2008, 2008, _OS1508-1OS1508-2	0.0	0
103	Fatigue Process Evaluation of Ultrasonic Fatigue Testing in High Strength Steel Analyzed by Acoustic Emission and Non-Linear Ultrasonic. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 205-210.	0.4	0
104	Ultrasonic fatigue process analyzed by using LVD and continuous ae waveform analysis system. , 2012, ,		0
105	High-Temperature Ultrasonic Fatigue Testing at 1000°C. Advanced Materials Research, 0, 891-892, 1413-1418.	0.3	0
106	On Material Qualification and Strength Design for Hydrogen Service. , 2015, , .		0
107	Effect of Mean Stress on Small Fatigue Crack Growth Rate on Low Carbon Steel with Several Simulated HAZ Heat Treatment. Procedia Structural Integrity, 2016, 2, 3002-3009.	0.8	0
108	Recent Progress on Interpretation of Tensile Ductility Loss for Various Austenitic Stainless Steels With External and Internal Hydrogen. , 2017, , .		0

#	Article	IF	CITATIONS
109	Effect of internal hydrogen on low- and high-cycle fatigue life properties and the role of strain-induced martensitic transformation and solid solution strengthening. Transactions of the JSME (in Japanese), 2021, 87, 20-00439-20-00439.	0.2	0
110	Fatigue crack growth properties of austenitic stainless steels under the influence of external/internal hydrogen and comparison with those of low alloy steels, carbon steels and aluminum alloys. Transactions of the JSME (in Japanese), 2021, 87, 21-00084-21-00084.	0.2	0
111	Significance of Sizes and Mechanical Properties of Inclusions on Giga-Cycle Fatigue for High-Strength Steels. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 585-586.	0.0	0
112	Nano-Meso-Macroscopic Strength analysis of Tempered-Martensitic steels. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 623-624.	0.0	0
113	Effect of Frequency on Giga-Cycle Fatigue properties for Ti-6Al-4V Alloy. The Proceedings of the JSME Annual Meeting, 2003, 2003.1, 149-150.	0.0	0
114	Giga-Cycle Fatigue Properties for SUP7 Spring Steels. The Proceedings of the JSME Annual Meeting, 2003, 2003.1, 143-144.	0.0	0
115	309 Fatigue Properties of Ultrafine Grained Steels with Plasma nitriding. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2005, 2005, 189-190.	0.0	0
116	202 Atomic Force Microscopy of Local Plastic Ddeformation for Modified-Ausformed Tempered Martensitic Steel. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2005, 2005, 89-90.	0.0	0
117	1346 Gigacycle Fatigue Properties of Modified-Ausformed V-added Steels. The Proceedings of the JSME Annual Meeting, 2005, 2005.1, 203-204.	0.0	0
118	1348 Giga-Cycle Fatigue Properties for S40C Carbon Steel. The Proceedings of the JSME Annual Meeting, 2005, 2005.1, 207-208.	0.0	0
119	304 Effect of Hydrogen on the Gigacycle Fatigue Properties of Low Alloy Steels. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2006, 2006, 125-126.	0.0	0
120	303 Effect of stress ratio on giga-cycle fatigue properties for Ti-6Al-4V Alloy. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2006, 2006, 123-124.	0.0	0
121	302 Effect of Frequency on the Fish-eye Fracture in High Strength Steels. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2006, 2006, 121-122.	0.0	0
122	2031 Ultrasonic Fatigue Testing with Specimens Having A Straight Part. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 113-114.	0.0	0
123	2032 Fatigue properties for high strength steel under tensile mean stress. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 115-116.	0.0	0
124	2029 Gigacycle Fatigue Properties of Hydrogen Charged High Strength Steels. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 109-110.	0.0	0
125	2308 An Examination of Fatigue Properties of Titanium Alloy. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 333-334.	0.0	0
126	2035 Giga-Cycle Fatigue Properties of Induction Hardened Structural Steels. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 121-122.	0.0	0

#	Article	IF	CITATIONS
127	OS1505 Fatigue Properties of Plasma Nitrided Ultrafine-Grained Steels. The Proceedings of the Materials and Mechanics Conference, 2008, 2008, _OS1505-1OS1505-2	0.0	0
128	OS1513 Specimen size effect on gigacycle fatigue properties of high-strength steel. The Proceedings of the Materials and Mechanics Conference, 2008, 2008, _OS1513-1OS1513-2	0.0	0
129	OS0708 Size Effects in Gigacycle Fatigue of High-Strength Steel. The Proceedings of the Materials and Mechanics Conference, 2009, 2009, 273-274.	0.0	Ο
130	OS0718 Fatigue Properties of extruded AZ61 and AZ31 magnesium alloys. The Proceedings of the Materials and Mechanics Conference, 2009, 2009, 417-418.	0.0	0
131	1124 Effect of Mn contents on fatigue Properties of plasma nitrided Fe-C-Mn steels. The Proceedings of the Materials and Mechanics Conference, 2010, 2010, 1146-1147.	0.0	Ο
132	1116 Giga-cycle fatigue properties for high-strength spheroidal graphite cast iron. The Proceedings of the Materials and Mechanics Conference, 2010, 2010, 1024-1025.	0.0	0
133	OS2215 Gigacycle fatigue Properties of hydrogen charged SCM435 steel used for storage cylinder in hydrogen station. The Proceedings of the Materials and Mechanics Conference, 2011, 2011, _OS2215-1OS2215-2	0.0	0
134	OS0604 Development of an ultrasonic fatigue testing machine at high temperature up to 1000â,, f. The Proceedings of the Materials and Mechanics Conference, 2011, 2011, _OS0604-1OS0604-2	0.0	0
135	OS0614 Gigacycle Fatigue properties of an Ultrafine-Grained Steel Processed by Warm Tempforming. The Proceedings of the Materials and Mechanics Conference, 2011, 2011, _OS0614-1OS0614-2	0.0	Ο
136	G030016 Effect of hydrogen on the gigacycle fatigue properties of V-added steel The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _G030016-1G030016-3.	0.0	0
137	OS1304 Ggigacycle fatigue properties of hydrogen charged low alloy steel used for storage cylinder in hydrogen station The Proceedings of the Materials and Mechanics Conference, 2013, 2013, _OS1304-1OS1304-3	0.0	Ο
138	OS1002 Effect of hydrogen on gigacycle fatigue properties of SNCM439 steel used for storage cylinder in hydrogen station. The Proceedings of the Materials and Mechanics Conference, 2014, 2014,	0.0	0
139	GS0202-184 Low- and high-cycle fatigue properties of SUS630 stainless steel. The Proceedings of the Materials and Mechanics Conference, 2015, 2015, _GS0202-18GS0202-18.	0.0	Ο
140	Low- and high-cycle fatigue properties of hydrogen charged austenitic stainless steels The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, S0310304.	0.0	0
141	Giga-cycle Fatigue Properties for A5083P-O Aluminum Alloy under Tensile Mean Stress. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, G0300202.	0.0	Ο
142	Gigacycle fatigue properties of SUS630 stainless steel The Proceedings of the Materials and Mechanics Conference, 2017, 2017, OS0521.	0.0	0
143	Effect of stress ratio on gigacycle fatigue properties of SUS630 precipitation hardening stainless steel The Proceedings of Mechanical Engineering Congress Japan, 2018, 2018, G0300104.	0.0	0
144	Small Fatigue Crack Initiation and Growth behavior of Low Carbon Steel with Simulated HAZ Heat Treatment. The Proceedings of the Materials and Mechanics Conference, 2018, 2018, OS0809.	0.0	0

#	Article	IF	CITATIONS
145	Small Fatigue Crack Initiation and Growth Behavior in Notch Root for Low Carbon Steel. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0301.	0.0	0
146	Fatigue limit in very high cycle fatigue of high-strength steel. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0901.	0.0	0
147	Low- and giga-cycle fatigue properties of SUS329J3L duplex stainless steel The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0902.	0.0	0
148	Effect of hydrogen on gigacycle fatigue properties of SNCM439 steel used for storage cylinder in 70 MPa hydrogen station. Transactions of the JSME (in Japanese), 2020, 86, 19-00298-19-00298.	0.2	0
149	Effects of MnS on Gigacycle Fatigue Properties of SCM440 Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 799-806.	0.4	0
150	Atomic Force Microscopy of Local Plastic Deformation for Tempered Martensite. , 2006, , 233-234.		0
151	Fracture mode classification by texture analysis of fracture surface scanning electron microscope images. Science and Technology of Advanced Materials Methods, 0, , 0-0.	1.3	Ο