Jian Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3850219/publications.pdf Version: 2024-02-01

		394421	434195
32	1,072	19	31
papers	1,072 citations	h-index	g-index
32	32	32	1697
all docs	docs citations	times ranked	citing authors

LIAN LIN

#	Article	lF	CITATIONS
1	Laminated high-performance semi-transparent perovsktie solar cells: Enabled by sticky polyethyleminine as glue. Organic Electronics, 2022, 100, 106352.	2.6	4
2	Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays. Microsystems and Nanoengineering, 2022, 8, 16.	7.0	31
3	Balancing the Molecular Aggregation and Vertical Phase Separation in the Polymer: Nonfullerene Blend Films Enables 13.09% Efficiency of Organic Solar Cells with Inkjetâ€Printed Active Layer. Advanced Energy Materials, 2022, 12, .	19.5	17
4	Fabrication of opaque aluminum electrode-based perovskite solar cells enabled by the interface optimization. Organic Electronics, 2022, 104, 106475.	2.6	10
5	High Power Conversion Efficiency of 13.61% for 1 cm ² Flexible Polymer Solar Cells Based on Patternable and Massâ€Producible Gravureâ€Printed Silver Nanowire Electrodes. Advanced Functional Materials, 2021, 31, 2007276.	14.9	55
6	Revealing the Mechanism behind the Catastrophic Failure of nâ€iâ€p Type Perovskite Solar Cells under Operating Conditions and How to Suppress It. Advanced Functional Materials, 2021, 31, 2103820.	14.9	22
7	An efficiency of 14.29% and 13.08% for 1 cm ² and 4 cm ² flexible organic solar cells enabled by sol–gel ZnO and ZnO nanoparticle bilayer electron transporting layers. Journal of Materials Chemistry A, 2021, 9, 16889-16897.	10.3	26
8	Synergetic effects of electrochemical oxidation of Spiro-OMeTAD and Li ⁺ ion migration for improving the performance of n–i–p type perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 7575-7585.	10.3	50
9	Resistance change of stretchable composites based on inkjet-printed silver nanowires. Journal Physics D: Applied Physics, 2020, 53, 05LT02.	2.8	19
10	Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells. Journal of Materials Science, 2020, 55, 14893-14906.	3.7	18
11	Use of solution-processed zinc oxide to prevent the breakdown in silver nanowire networks. Nanotechnology, 2020, 31, 18LT01.	2.6	11
12	Suppression of Ag migration by low-temperature sol-gel zinc oxide in the Ag nanowires transparent electrode-based flexible perovskite solar cells. Organic Electronics, 2020, 82, 105714.	2.6	22
13	Super-flexible perovskite solar cells with high power-per-weight on 17 <i>μ<</i> m thick PET substrate utilizing printed Ag nanowires bottom and top electrodes. Flexible and Printed Electronics, 2019, 4, 034002.	2.7	22
14	Transparent triboelectric sensor arrays using gravure printed silver nanowire electrodes. Applied Physics Express, 2019, 12, 066503.	2.4	20
15	The electrical sintering and fusing effects of Aerosol-Jet printed silver conductive line. Materials Letters, 2019, 246, 5-8.	2.6	4
16	Fully Solutionâ€Processed Semiâ€Transparent Perovskite Solar Cells With Inkâ€Jet Printed Silver Nanowires Top Electrode (Solar RRL 2â^•2018). Solar Rrl, 2018, 2, 1770152.	5.8	6
17	Fully Solutionâ€Processed Semiâ€Transparent Perovskite Solar Cells With Inkâ€Jet Printed Silver Nanowires Top Electrode. Solar Rrl, 2018, 2, 1700184.	5.8	66
18	Fully Coated Semitransparent Organic Solar Cells with a Doctor-Blade-Coated Composite Anode Buffer Layer of Phosphomolybdic Acid and PEDOT:PSS and a Spray-Coated Silver Nanowire Top Electrode. ACS Applied Materials & Interfaces, 2018, 10, 943-954.	8.0	83

Jian Lin

#	Article	IF	CITATIONS
19	An ultrahighly sensitive and repeatable flexible pressure sensor based on PVDF/PU/MWCNT hierarchical framework-structured aerogels for monitoring human activities. Journal of Materials Chemistry C, 2018, 6, 12575-12583.	5.5	27
20	Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode. Solar Energy Materials and Solar Cells, 2018, 185, 399-405.	6.2	111
21	66â€2: Printed Carbon Nanotube Thinâ€film Transistors and Application in OLED Backplane Circuits. Digest of Technical Papers SID International Symposium, 2017, 48, 968-971.	0.3	2
22	Selective Conversion from p-Type to n-Type of Printed Bottom-Gate Carbon Nanotube Thin-Film Transistors and Application in Complementary Metal–Oxide–Semiconductor Inverters. ACS Applied Materials & Interfaces, 2017, 9, 12750-12758.	8.0	41
23	The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Applied Physics Letters, 2017, 110, .	3.3	59
24	49-3L:Late-News Paper: Flexible and Stretchable Hybrid Electronics Systems for Wearable Applications. Digest of Technical Papers SID International Symposium, 2016, 47, 668-671.	0.3	2
25	Printed flexible and stretchable hybrid electronic systems for wearable applications. , 2016, , .		1
26	The solvent treatment effect of the PEDOT:PSS anode interlayer in inverted planar perovskite solar cells. RSC Advances, 2016, 6, 24501-24507.	3.6	38
27	Zinc oxide: Conjugated polymer nanocomposite as cathode buffer layer for solution processed inverted organic solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 248-259.	6.2	63
28	Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Applied Physics Letters, 2015, 106, .	3.3	116
29	2,2-Dicyanovinyl-end-capped oligothiophenes as electron acceptor in solution processed bulk-heterojunction organic solar cells. Organic Electronics, 2015, 23, 28-38.	2.6	35
30	Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate. Journal of Materials Science, 2014, 49, 2054-2062.	3.7	11
31	Printed thin-film transistors with functionalized single-walled carbon nanotube inks. Journal of Materials Chemistry, 2012, 22, 2051-2056.	6.7	39
32	Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. Journal of Materials Chemistry, 2012, 22, 20747.	6.7	41