Karel ValiÅ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3849613/publications.pdf Version: 2024-02-01

Κλάξι Πλιιά:

#	Article	IF	CITATIONS
1	α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene, 2008, 27, 4324-4335.	2.6	266
2	Suppression of Tumor Growth <i>In vivo</i> by the Mitocan α-tocopheryl Succinate Requires Respiratory Complex II. Clinical Cancer Research, 2009, 15, 1593-1600.	3.2	125
3	Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radical Biology and Medicine, 2011, 50, 1546-1555.	1.3	100
4	Hippo/Mst1 Stimulates Transcription of the Proapoptotic Mediator <i>NOXA</i> in a FoxO1-Dependent Manner. Cancer Research, 2011, 71, 946-954.	0.4	91
5	α-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 782-794.	2.2	51
6	Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia, 2016, 30, 209-218.	3.3	31
7	Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis. Experimental Cell Research, 2016, 349, 273-281.	1.2	22
8	Targeting ERK-Hippo Interplay in Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 3236.	1.8	17
9	Immunity to killer toxin K1 is connected with the golgi-to-vacuole protein degradation pathway. Folia Microbiologica, 2006, 51, 196-202.	1.1	9
10	VDAC2 and aldolase A identified as membrane proteins of K562 cells with increased expression under iron deprivation. Molecular and Cellular Biochemistry, 2008, 311, 225-231.	1.4	9
11	Quambalarine B, a Secondary Metabolite from <i>Quambalaria cyanescens</i> with Potential Anticancer Properties. Journal of Natural Products, 2016, 79, 2304-2314.	1.5	9
12	MS-Based Approaches Enable the Structural Characterization of Transcription Factor/DNA Response Element Complex. Biomolecules, 2019, 9, 535.	1.8	9
13	Highâ€throughput workflow for identification of phosphorylated peptides by LCâ€MALDIâ€TOF/TOFâ€MS coupled to <i>in situ</i> enrichment on MALDI plates functionalized by ion landing. Journal of Mass Spectrometry, 2015, 50, 802-811.	0.7	8
14	The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells. Cells, 2019, 8, 191.	1.8	8
15	Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B. Oncotarget, 2017, 8, 103137-103153.	0.8	6
16	Motif orientation matters: Structural characterization of TEAD1 recognition of genomic DNA. Structure, 2021, 29, 345-356.e8.	1.6	2
17	L-Asparaginase Causes Metabolic Reprogramming in ALL Cells. Blood, 2014, 124, 922-922.	0.6	1
18	L-Asparaginase Strongly Affects Bioenergetics in Leukemic Cells. Blood, 2012, 120, 779-779.	0.6	0