Huamin Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3849536/huamin-wang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58	2,578 citations	22	50
papers		h-index	g-index
64	3,053 ext. citations	9.9	5.52
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
58	Quantification of biogenic carbon in fuel blends through LSC 14C direct measurement and assessment of uncertainty. <i>Fuel</i> , 2022 , 315, 122859	7.1	O
57	Kinetics of nitrogen-, oxygen- and sulfur-containing compounds hydrotreating during co-processing of bio-crude with petroleum stream. <i>Applied Catalysis B: Environmental</i> , 2022 , 307, 121197	21.8	O
56	Deactivation by Potassium Accumulation on a Pt/TiO2 Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis. <i>ACS Catalysis</i> , 2022 , 12, 465-480	13.1	1
55	Selective Butene Formation in Direct Ethanol-to-C3+-Olefin Valorization over ZnM/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen. <i>ACS Catalysis</i> , 2021 , 11, 7193	3-7209	5
54	Directing the Rate-Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of Alkanols in Nanoscopic Confinements. <i>Angewandte Chemie</i> , 2021 , 133, 2334-2341	3.6	O
53	Directing the Rate-Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of Alkanols in Nanoscopic Confinements. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2304-2311	16.4	7
52	Understanding the Deactivation of AgIrO2/SiO2 Catalysts for the Single-step Conversion of Ethanol to Butenes. <i>ChemCatChem</i> , 2021 , 13, 999-1008	5.2	7
51	Hydrogenation and CS bond activation pathways in thiophene and tetrahydrothiophene reactions on sulfur-passivated surfaces of Ru, Pt, and Re nanoparticles. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 119797	21.8	5
50	Elucidation of Active Sites in Aldol Condensation of Acetone over Single-Facet Dominant Anatase TiO (101) and (001) Catalysts. <i>Jacs Au</i> , 2021 , 1, 41-52		13
49	Performance and techno-economic evaluations of co-processing residual heavy fraction in bio-oil hydrotreating. <i>Catalysis Today</i> , 2021 , 365, 357-364	5.3	8
48	Probing Acid B ase Properties of Anatase TiO2 Nanoparticles with Dominant {001} and {101} Facets Using Methanol Chemisorption and Surface Reactions. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 3988-	4ð80	7
47	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. <i>Applied Catalysis B: Environmental</i> , 2021 , 292, 120162	21.8	35
46	Operando S/TEM Reactions of Pt/TiO2 Catalysts for Catalytic Fast Pyrolysis. <i>Microscopy and Microanalysis</i> , 2020 , 26, 1696-1697	0.5	1
45	In Situ Catalytic Fast Pyrolysis Using Red Mud Catalyst: Impact of Catalytic Fast Pyrolysis Temperature and Biomass Feedstocks. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5156-5164	8.3	10
44	Tracking renewable carbon in bio-oil/crude co-processing with VGO through 13C/12C ratio analysis. <i>Fuel</i> , 2020 , 275, 117770	7.1	10
43	Single-Facet Dominant Anatase TiO2 (101) and (001) Model Catalysts to Elucidate the Active Sites for Alkanol Dehydration. <i>ACS Catalysis</i> , 2020 , 10, 4268-4279	13.1	16
42	Pilot Plant Reliability Metrics for Grinding and Fast Pyrolysis of Woody Residues. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2793-2805	8.3	4

(2016-2020)

41	Reformulated Red Mud: a Robust Catalyst for In Situ Catalytic Pyrolysis of Biomass. <i>Energy & Energy &</i>	4.1	7	
40	Transition-Metal Nitroprussides Examined for Water Harvesting and Sorption Cooling. <i>Inorganic Chemistry</i> , 2020 , 59, 15620-15625	5.1	3	
39	Quantitative Determination of Biomass-Derived Renewable Carbon in Fuels from Coprocessing of Bio-Oils in Refinery Using a Stable Carbon Isotopic Approach. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17565-17572	8.3	2	
38	Nanoporous catalysts for biomass conversion 2020 , 387-440		1	
37	Single-atom Automobile Exhaust Catalysts. <i>ChemNanoMat</i> , 2020 , 6, 1659-1682	3.5	12	
36	Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. <i>Chemical Reviews</i> , 2020 , 120, 11370-11419	68.1	62	
35	Selective adsorption removal of carbonyl molecular foulants from real fast pyrolysis bio-oils. <i>Biomass and Bioenergy</i> , 2020 , 136, 105522	5.3	3	
34	Technology advancements in hydroprocessing of bio-oils. <i>Biomass and Bioenergy</i> , 2019 , 125, 151-168	5.3	29	
33	Upgrading Fast Pyrolysis Liquids 2019 , 207-255		4	
32	WO supported on EAl2O3 with different morphologies as model catalysts for alkanol dehydration. <i>Journal of Catalysis</i> , 2018 , 363, 1-8	7.3	15	
31	Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. <i>Energy and Environmental Science</i> , 2018 , 11, 2904-2918	35.4	66	
30	Stabilization of Bio-oil to Enable Its Hydrotreating to Produce Biofuels. <i>Catalytic Science Series</i> , 2018 , 57-76	0.4	0	
29	Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts. <i>ChemSusChem</i> , 2018 , 11, 285-291	8.3	64	
28	Impact of structural defects and hydronium ion concentration on the stability of zeolite BEA in aqueous phase. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 996-1002	21.8	25	
27	Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil. <i>Energy & Discourt Stabilization of Fast Pyrolysis Bio-oil. Energy & Discourt Bio-oil. Energy & Dis</i>	4.1	15	
26	Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 5533-5545	8.3	74	
25	Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	5	
24	Molybdenum Carbides, Active and In Situ Regenerable Catalysts in Hydroprocessing of Fast Pyrolysis Bio-Oil. <i>Energy & Discounty of Energy & Discounty of E</i>	4.1	21	

23	Characterization of Deactivated Bio-oil Hydrotreating Catalysts. <i>Topics in Catalysis</i> , 2016 , 59, 65-72	2.3	24
22	Investigating the Surface Structure of FAl2O3 Supported WOX Catalysts by High Field 27Al MAS NMR and Electronic Structure Calculations. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 23093-23103	3.8	15
21	Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil. <i>Green Chemistry</i> , 2015 , 17, 2487-2494	10	26
20	Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 892-902	8.3	66
19	Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation. <i>Green Chemistry</i> , 2015 , 17, 5131-5135	10	108
18	Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-oil. <i>Energy & Energy & Enels</i> , 2015 , 29, 273-277	4.1	26
17	Catalytic fast pyrolysis of lignocellulosic biomass. <i>Chemical Society Reviews</i> , 2014 , 43, 7594-623	58.5	696
16	Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil. <i>Energy & Energy & E</i>	4.1	62
15	Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds. <i>ACS Catalysis</i> , 2013 , 3, 1047-1070	13.1	508
14	Pathways for biomass-derived lignin to hydrocarbon fuels. <i>Biofuels, Bioproducts and Biorefining</i> , 2013 , 7, 602-626	5.3	144
13	Synthesis of transition metal nitride by nitridation of metastable oxide precursor. <i>Journal of Solid State Chemistry</i> , 2012 , 194, 238-244	3.3	10
12	Mechanism and Site Requirements of Thiophene Hydrodesulfurization Catalyzed by Supported Pt Clusters. <i>ChemCatChem</i> , 2011 , 3, 1166-1175	5.2	33
11	Thiophene hydrodesulfurization catalysis on supported Ru clusters: Mechanism and site requirements for hydrogenation and desulfurization pathways. <i>Journal of Catalysis</i> , 2010 , 273, 245-256	7.3	64
10	Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over NiMoS2/EAl2O3. <i>Journal of Catalysis</i> , 2009 , 264, 31-43	7.3	76
9	Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/EAl2O3. <i>Journal of Catalysis</i> , 2008 , 258, 153-164	7.3	68
8	Low-temperature approach to synthesize iron nitride from amorphous iron. <i>Inorganic Chemistry</i> , 2008 , 47, 1261-3	5.1	16
7	Synthesis of 4,6-dimethyl-tetrahydro- and hexahydro-dibenzothiophene. <i>Tetrahedron Letters</i> , 2008 , 49, 2063-2065	2	8
6	On the Formation of Pentylpiperidine in the Hydrodenitrogenation of Pyridine. <i>Catalysis Letters</i> , 2008 , 126, 1-9	2.8	7

LIST OF PUBLICATIONS

5	HDS of benzothiophene and dihydrobenzothiophene over sulfided Mo/FAl2O3. <i>Applied Catalysis A: General</i> , 2008 , 350, 191-196	j.1	22
4	Hydrodenitrogenation of 2-methylpyridine and its intermediates 2-methylpiperidine and tetrahydro-methylpyridine over sulfided NiMo/FAl2O3. <i>Journal of Catalysis</i> , 2007 , 251, 295-306	7.3	8
3	New Approach to the Synthesis of Bulk and Supported Bimetallic Molybdenum Nitrides. <i>Chemistry of Materials</i> , 2005 , 17, 3262-3267).6	39
2	A novel Ni2Mo3N/MCM41 catalyst for the hydrogenation of aromatics. <i>Catalysis Letters</i> , 2005 , 100, 73-7½	8	11
1	Fast Pyrolysis and Hydrotreating: 2015 State of Technology R&D and Projections to 2017		4