Feng Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3849058/publications.pdf

Version: 2024-02-01

37	761	18	27
papers	citations	h-index	g-index
38	38	38	970
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Singleâ€, Dualâ€, Triple, and Quadrupleâ€Wavelength Surfaceâ€Emitting Lasing in Blueâ€Phase Liquid Crystal. Advanced Materials, 2022, 34, e2108330.	21.0	17
2	Singleâ€, Dualâ€, Triple, and Quadrupleâ€Wavelength Surfaceâ€Emitting Lasing in Blueâ€Phase Liquid Crystal (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	21.0	0
3	λ/30 inorganic features achieved by multi-photon 3D lithography. Nature Communications, 2022, 13, 1357.	12.8	32
4	Flytrap Inspired pHâ€Driven 3D Hydrogel Actuator by Femtosecond Laser Microfabrication. Advanced Materials Technologies, 2022, 7, .	5.8	25
5	î»/12 Super Resolution Achieved in Maskless Optical Projection Nanolithography for Efficient Cross-Scale Patterning. Nano Letters, 2021, 21, 3915-3921.	9.1	29
6	Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases. Nature Communications, 2021, 12, 3477.	12.8	24
7	lonic Carbazole-Based Water-Soluble Two-Photon Photoinitiator and the Fabrication of Biocompatible 3D Hydrogel Scaffold. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27796-27805.	8.0	31
8	Modulation of Cell Behavior by 3D Biocompatible Hydrogel Microscaffolds with Precise Configuration. Nanomaterials, 2021, 11, 2325.	4.1	8
9	Stepwise Optimized 3D Printing of Arbitrary 3D Structures at Millimeter Scale with High Precision Surface. Macromolecular Materials and Engineering, 2019, 304, 1900400.	3.6	3
10	Biocompatible Three-Dimensional Hydrogel Cell Scaffold Fabricated by Sodium Hyaluronate and Chitosan Assisted Two-Photon Polymerization. ACS Applied Bio Materials, 2019, 2, 3077-3083.	4.6	24
11	Cell Behavior on 3D Ti-6Al-4 V Scaffolds with Different Porosities. ACS Applied Bio Materials, 2019, 2, 697-703.	4.6	8
12	Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1782-1789.	8.0	52
13	Laser-Induced Antibacterial Activity of Novel Symmetric Carbazole-Based Ethynylpyridine Photosensitizers. ACS Omega, 2018, 3, 3737-3743.	3. 5	5
14	Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system. AIP Advances, 2018, 8, .	1.3	11
15	Magnetic-field-driven ultra-small 3D hydrogel microstructures: Preparation of gel photoresist and two-photon polymerization microfabrication. Sensors and Actuators B: Chemical, 2018, 274, 541-550.	7.8	33
16	The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet. Scientific Reports, 2017, 7, 41757.	3.3	28
17	Inhibited/enhanced fluorescence of embedded fluorescent defects by manipulation of spontaneous emission based on photonic stopband. RSC Advances, 2017, 7, 19737-19741.	3.6	6
18	Nondegenerate two-photon absorption properties of a newly synthesized carbazole derivative. Journal of Materials Chemistry C, 2017, 5, 470-475.	5.5	14

#	Article	IF	CITATIONS
19	Protein-Based 3D Microstructures with Controllable Morphology and pH-Responsive Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42247-42257.	8.0	38
20	Dual wavelength two-photon absorption in two-beam laser direct writing silver nanowire and the conductivity enhancement. Applied Physics Letters, 2017, 110, 263113.	3.3	6
21	Laser Direct Writing of Silver Nanowire with Amino Acids-Assisted Multiphoton Photoreduction. Journal of Physical Chemistry C, 2016, 120, 26532-26538.	3.1	15
22	Simultaneous synthesis/assembly of anisotropic cake-shaped porphyrin particles toward colloidal microcrystals. Chemical Communications, 2016, 52, 3619-3622.	4.1	7
23	Layer-by-layer assembled PMMA-SH/CdSe–Au nanocomposite thin films and the optical limiting property. RSC Advances, 2016, 6, 25401-25408.	3.6	5
24	High Q Plasmonic Lasing of Band Edge Modes in an Asymmetry Environment. Plasmonics, 2015, 10, 1761-1769.	3.4	3
25	A facile layer-by-layer assembly method for the fabrication of fluorescent polymer/quantum dot nanocomposite thin films. RSC Advances, 2014, 4, 33206.	3.6	21
26	High efficiency solar cell based on ZnO nanowire array prepared by different growth methods. RSC Advances, 2014, 4, 10462.	3.6	44
27	Inverse opal hydrogel sensor for the detection of pH and mercury ions. RSC Advances, 2014, 4, 20567.	3.6	35
28	Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Applied Physics Letters, 2013, 102, .	3.3	34
29	Preparation, photoisomerization, and microfabrication with twoâ€photon polymerization of crosslinked azoâ€polymers. Journal of Applied Polymer Science, 2013, 130, 2947-2956.	2.6	4
30	Hierarchical CdSe–gold hybrid nanocrystals: synthesis and optical properties. Physical Chemistry Chemical Physics, 2012, 14, 13180.	2.8	7
31	Plasmonic resonance enhancement of single gold nanorod in two-photon photopolymerization for fabrication of polymer/metal nanocomposites. Applied Physics A: Materials Science and Processing, 2012, 106, 773-778.	2.3	8
32	Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter, 2011, 7, 10353.	2.7	59
33	A New Family of Dendrimers with Naphthaline Core and Triphenylamine Branching as a Two-Photon Polymerization Initiator. Journal of Physical Chemistry C, 2011, 115, 776-784.	3.1	54
34	Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser. Applied Physics Letters, 2011, 98, 093304.	3.3	13
35	Optimization of Cavity Length to Obtain Low Threshold Solid-state Dye Laser. Materials Research Society Symposia Proceedings, 2011, 1365, 1.	0.1	0
36	Triphenylamine-modified quinoxaline derivatives as two-photon photoinitiators. New Journal of Chemistry, 2009, 33, 1578.	2.8	29

#	Article	IF	CITATIONS
37	Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization. Applied Physics A: Materials Science and Processing, 2007, 89, 145-148.	2.3	29