
Willeke M C Van Roon-Mom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848953/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Reviews and Reports, 2022, 18, 441-456.	3.8	7
2	Preparing n-of-1 Antisense Oligonucleotide Treatments for Rare Neurological Diseases in Europe: Genetic, Regulatory, and Ethical Perspectives. Nucleic Acid Therapeutics, 2022, 32, 83-94.	3.6	35
3	Juvenileâ€Onset Huntington Disease Pathophysiology and Neurodevelopment: A Review. Movement Disorders, 2022, 37, 16-24.	3.9	25
4	Huntington Disease Gene Expression Signatures in Blood Compared to Brain of YAC128 Mice as Candidates for Monitoring of Pathology. Molecular Neurobiology, 2022, 59, 2532-2551.	4.0	1
5	Delivery of Antisense Oligonucleotides to the Mouse Brain by Intracerebroventricular Injections. Methods in Molecular Biology, 2022, 2434, 333-341.	0.9	3
6	Iron accumulation induces oxidative stress, while depressing inflammatory polarization in human iPSC-derived microglia. Stem Cell Reports, 2022, 17, 1351-1365.	4.8	25
7	Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathologica Communications, 2021, 9, 27.	5.2	79
8	Delivery of oligonucleotideâ€based therapeutics: challenges and opportunities. EMBO Molecular Medicine, 2021, 13, e13243.	6.9	181
9	Antisense Oligonucleotide-Induced Amyloid Precursor Protein Splicing Modulation as a Therapeutic Approach for Dutch-Type Cerebral Amyloid Angiopathy. Nucleic Acid Therapeutics, 2021, 31, 351-363.	3.6	8
10	The MID1 Protein: A Promising Therapeutic Target in Huntington's Disease. Frontiers in Genetics, 2021, 12, 761714.	2.3	7
11	Statistical method for modeling sequencing data from different technologies in longitudinal studies with application to Huntington disease. Biometrical Journal, 2021, 63, 745-760.	1.0	1
12	Pathological characterization of T2*-weighted MRI contrast in the striatum of Huntington's disease patients. Neurolmage: Clinical, 2020, 28, 102498.	2.7	9
13	Generation of a gene-corrected human isogenic line (UAMi006-A) from propionic acidemia patient iPSC with an homozygous mutation in the PCCB gene using CRISPR/Cas9 technology. Stem Cell Research, 2020, 49, 102055.	0.7	2
14	Generation of 5 induced pluripotent stem cell lines, LUMCi007-A and B and LUMCi008-A, B and C, from 2 patients with Huntington disease. Stem Cell Research, 2019, 39, 101498.	0.7	3
15	Generation of genetically matched hiPSC lines from two mosaic facioscapulohumeral dystrophy type 1 patients. Stem Cell Research, 2019, 40, 101560.	0.7	6
16	Peripheral mitochondrial function correlates with clinical severity in idiopathic Parkinson's disease. Movement Disorders, 2019, 34, 1192-1202.	3.9	23
17	Osteopontin and phosphoâ€SMAD2/3 are associated with calcification of vessels in Dâ€CAA, an hereditary cerebral amyloid angiopathy. Brain Pathology, 2019, 29, 793-802.	4.1	15
18	Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics, 2019, 16, 263-286.	4.4	95

#	Article	IF	CITATIONS
19	Generation of 3 human induced pluripotent stem cell lines LUMCi005-A, B and C from a Hereditary Cerebral Hemorrhage with Amyloidosis-Dutch type patient. Stem Cell Research, 2019, 34, 101359.	0.7	6
20	Deregulated Splicing Is a Major Mechanism of RNA-Induced Toxicity in Huntington's Disease. Journal of Molecular Biology, 2019, 431, 1869-1877.	4.2	57
21	Dose-Dependent Lowering of Mutant Huntingtin Using Antisense Oligonucleotides in Huntington Disease Patients. Nucleic Acid Therapeutics, 2018, 28, 59-62.	3.6	33
22	Intracerebroventricular Administration of a 2′-O-Methyl Phosphorothioate Antisense Oligonucleotide Results in Activation of the Innate Immune System in Mouse Brain. Nucleic Acid Therapeutics, 2018, 28, 63-73.	3.6	23
23	TGFβ pathway deregulation and abnormal phosphoâ€SMAD2/3 staining in hereditary cerebral hemorrhage with amyloidosisâ€Dutch type. Brain Pathology, 2018, 28, 495-506.	4.1	15
24	IO1â€QRX-704, a novel antisense oligonucleotide therapy, designed to prevent hd pathology while maintaining htt function. , 2018, , .		1
25	P2â€274: MAPPING OF NATRIURETIC PEPTIDES AND THEIR RECEPTORS IN THE BRAINS OF NONâ€DEMENTED HUMAN SUBJECTS AND PATIENTS WITH ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P782.	0.8	0
26	Natriuretic Peptides in Post-mortem Brain Tissue and Cerebrospinal Fluid of Non-demented Humans and Alzheimer's Disease Patients. Frontiers in Neuroscience, 2018, 12, 864.	2.8	13
27	Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurology: Genetics, 2018, 4, e275.	1.9	15
28	Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B. Stem Cell Research, 2018, 29, 125-128.	0.7	18
29	Brain Transcriptomic Analysis of Hereditary Cerebral Hemorrhage With Amyloidosis-Dutch Type. Frontiers in Aging Neuroscience, 2018, 10, 102.	3.4	13
30	Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Molecular Neurodegeneration, 2018, 13, 31.	10.8	47
31	A07â€A comparative study on blood and brain hd signatures: comparing mouse and human hd gene expression data. , 2018, , .		0
32	A33â€Differences in bioenergetic status in patient-derived fibroblast cells are associated with age of onset in huntington disease. , 2018, , .		0
33	Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Human Molecular Genetics, 2017, 26, ddw395.	2.9	83
34	The immunohistochemical distribution of the GABA A receptor α 1 , α 2 , α 3 , β 2/3 and γ 2 subunits in the human thalamus. Journal of Chemical Neuroanatomy, 2017, 82, 39-55.	2.1	10
35	Delivery is key: lessons learnt from developing spliceâ€switching antisense therapies. EMBO Molecular Medicine, 2017, 9, 545-557.	6.9	119
36	Age of onset in Huntington's disease is influenced by CAG repeat variations in other polyglutamine disease-associated genes. Brain, 2017, 140, e42-e42.	7.6	11

#	Article	IF	CITATIONS
37	Huntington's disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer's disease. Scientific Reports, 2017, 7, 44849.	3.3	45
38	Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice. Molecular Therapy - Nucleic Acids, 2017, 8, 232-242.	5.1	78
39	Huntingtin gene repeat size variations affect risk of lifetime depression. Translational Psychiatry, 2017, 7, 1277.	4.8	37
40	The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model. BMC Genomics, 2017, 18, 373.	2.8	22
41	Co-expression Patterns between ATN1 and ATXN2 Coincide with Brain Regions Affected in Huntington's Disease. Frontiers in Molecular Neuroscience, 2017, 10, 399.	2.9	9
42	Effect of post-mortem delay on N-terminal huntingtin protein fragments in human control and Huntington disease brain lysates. PLoS ONE, 2017, 12, e0178556.	2.5	2
43	B16â€Common disease signatures from gene expression analysis in huntington's disease human blood and brain. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A14.2-A15.	1.9	0
44	Common disease signatures from gene expression analysis in Huntington's disease human blood and brain. Orphanet Journal of Rare Diseases, 2016, 11, 97.	2.7	32
45	B17â€Blood transcriptome replicates dysregulation found in human huntington's disease brain and shares an immune signature with alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A15.1-A15.	1.9	0
46	Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington's disease peripheral blood samples. Metabolomics, 2016, 12, 137.	3.0	43
47	Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Scientific Reports, 2016, 6, 35200.	3.3	31
48	l8â€Huntingtin gene repeat polymorphisms affect risk of lifetime depression in the general population. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A61.3-A62.	1.9	0
49	Making (anti-) sense out of huntingtin levels in Huntington disease. Molecular Neurodegeneration, 2015, 10, 21.	10.8	20
50	Multidisciplinary Collaboration to Facilitate Hypotheses Generation in Huntington's Disease. , 2015, , .		3
51	Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. European Journal of Human Genetics, 2015, 23, 1349-1356.	2.8	79
52	Selection and characterization of llama single domain antibodies against N-terminal huntingtin. Neurological Sciences, 2015, 36, 429-434.	1.9	16
53	Underlying molecular mechanisms of <i>DIO2</i> susceptibility in symptomatic osteoarthritis. Annals of the Rheumatic Diseases, 2015, 74, 1571-1579.	0.9	75
54	Antisense oligonucleotides in therapy for neurodegenerative disorders. Advanced Drug Delivery Reviews, 2015, 87, 90-103.	13.7	243

#	Article	IF	CITATIONS
55	Ataxin-3 Protein and RNA Toxicity in Spinocerebellar Ataxia Type 3: Current Insights and Emerging Therapeutic Strategies. Molecular Neurobiology, 2014, 49, 1513-31.	4.0	72
56	Amyloid \hat{I}^2 in hereditary cerebral hemorrhage with amyloidosis-Dutch type. Reviews in the Neurosciences, 2014, 25, 641-51.	2.9	34
57	Preventing Formation of Toxic N-Terminal Huntingtin Fragments Through Antisense Oligonucleotide-Mediated Protein Modification. Nucleic Acid Therapeutics, 2014, 24, 4-12.	3.6	47
58	Changes in brainstem serotonergic and dopaminergic cell populations in experimental and clinical Huntington's disease. Neuroscience, 2013, 238, 71-81.	2.3	26
59	Antisense-mediated isoform switching of steroid receptor coactivator-1 in the central nucleus of the amygdala of the mouse brain. BMC Neuroscience, 2013, 14, 5.	1.9	12
60	Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: Removal of the CAG containing exon. Neurobiology of Disease, 2013, 58, 49-56.	4.4	66
61	Increased sensitivity of next generation sequencing-based expression profiling after globin reduction in human blood RNA. BMC Genomics, 2012, 13, 28.	2.8	62
62	Elevated brain iron is independent from atrophy in Huntington's Disease. NeuroImage, 2012, 61, 558-564.	4.2	60
63	Overview on Applications of Antisense-Mediated Exon Skipping. Methods in Molecular Biology, 2012, 867, 79-96.	0.9	30
64	Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues. PLoS ONE, 2012, 7, e35618.	2.5	73
65	Antisense-Mediated RNA Targeting: Versatile and Expedient Genetic Manipulation in the Brain. Frontiers in Molecular Neuroscience, 2011, 4, 10.	2.9	19
66	In silico discovery and experimental validation of new protein–protein interactions. Proteomics, 2011, 11, 843-853.	2.2	20
67	CAG repeat size in the normal <i>HTT</i> allele and age of onset in Huntington's disease. Movement Disorders, 2011, 26, 2450-2451.	3.9	2
68	Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide. PLoS ONE, 2011, 6, e24308.	2.5	85
69	A 3 months mild functional test regime does not affect disease parameters in young mdx mice. Neuromuscular Disorders, 2010, 20, 273-280.	0.6	38
70	Cost-effective HRMA pre-sequence typing of clone libraries; application to phage display selection. BMC Biotechnology, 2009, 9, 50.	3.3	7
71	Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease. BMC Molecular Biology, 2008, 9, 84.	3.0	66
72	Striosomes and mood dysfunction in Huntington's disease. Brain, 2007, 130, 206-221.	7.6	136

Willeke M C Van Roon-Mom

#	ARTICLE	IF	CITATIONS
73	Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science, 2007, 315, 1243-1249.	12.6	804
74	Cellular composition of human glial cultures from adult biopsy brain tissue. Journal of Neuroscience Methods, 2007, 166, 89-98.	2.5	47
75	Aggregate distribution in frontal and motor cortex in Huntington??s disease brain. NeuroReport, 2006, 17, 667-670.	1.2	25
76	TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease. Molecular Brain Research, 2004, 125, 120-128.	2.3	21
77	Molecular investigation of TBP allele length:. Neurobiology of Disease, 2003, 13, 37-45.	4.4	31
78	Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9023-9027.	7.1	494
79	Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Molecular Brain Research, 2002, 109, 1-10.	2.3	54
80	Fetal porcine ventral mesencephalon graft. Determination of the optimal gestational age for implantation in Parkinsonian patients. Experimental Brain Research, 2000, 132, 345-350.	1.5	10
81	Neurotrophic requirements of rat embryonic catecholaminergic neurons from the rostral ventrolateral medulla. Developmental Brain Research, 1999, 116, 217-222.	1.7	4
82	The IGF-I Amino-Terminal Tripeptide Glycine-Proline-Glutamate (GPE) Is Neuroprotective to Striatum in the Quinolinic Acid Lesion Animal Model of Huntington's Disease. Experimental Neurology, 1999, 159, 84-97.	4.1	45
83	Ameliorating Huntington's Disease by Targeting Huntingtin mRNA. , 0, , .		0
84	A putative role for genome-wide epigenetic regulatory mechanisms in Huntington's disease: A computational assessment. F1000Research, 0, 6, 1888.	1.6	0