Zhengjing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848448/publications.pdf

Version: 2024-02-01

35	907	17	29
papers	citations	h-index	g-index
35	35	35	883
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Influence of the charge compensation effect on the metal–insulator transition of Mg-W co-doped VO2. Applied Surface Science, 2022, 579, 151990.	6.1	18
2	Optimizing the Na metal/solid electrolyte interface through a grain boundary design. Journal of Materials Chemistry A, 2022, 10, 5280-5286.	10.3	18
3	Solid‧tate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Na/Na ₃ Zr ₂ Si _{PO₁₂ Interface. Small, 2022, 18, e2200716.}	10.0	24
4	Dualâ€Function of Cationâ€Doping to Activate Cationic and Anionic Redox in a Mnâ€Based Sodiumâ€Layered Oxide Cathode. Small, 2022, 18, e2200289.	10.0	10
5	Elevating Energy Density for Sodium-lon Batteries through Multielectron Reactions. Nano Letters, 2021, 21, 2281-2287.	9.1	54
6	Hole Dopants Disentangling Peierls–Mott Relevance States of VO ₂ by First-Principles Calculation. Journal of Physical Chemistry C, 2021, 125, 5816-5823.	3.1	13
7	Surface Potential Regulation Realizing Stable Sodium/Na ₃ Zr ₂ Si _{PO₁₂ Interface for Roomâ€Temperature Sodium Metal Batteries. Small, 2021, 17, e2100974.}	10.0	29
8	Size-Controllable M-Phase VO ₂ Nanocrystals for Flexible Thermochromic Energy-Saving Windows. ACS Applied Nano Materials, 2021, 4, 6778-6785.	5.0	24
9	Coordination Number-Dependent Complete Oxidation of Methane on NiO Catalysts. ACS Catalysis, 2021, 11, 9837-9849.	11.2	9
10	Grain Boundary Design of Solid Electrolyte Actualizing Stable Allâ€Solidâ€State Sodium Batteries. Small, 2021, 17, e2103819.	10.0	29
11	Triggering the Reversible Reaction of V ³⁺ /V ⁴⁺ /V ⁵⁺ in Na ₃ V ₂ (PO ₄) ₃ by Cr ³⁺ Substitution. ACS Applied Materials & Description of V ³⁺	8.0	47
12	Sn–W Co-doping Improves Thermochromic Performance of VO ₂ Films for Smart Windows. ACS Applied Energy Materials, 2020, 3, 9972-9979.	5.1	30
13	Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a Highâ€Energyâ€Density Cathode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1908680.	14.9	85
14	First-principle calculation of electronic and optical properties of VO2 by GGA-1/2 quasiparticle approximation. Journal of Applied Physics, 2020, 128, .	2.5	6
15	Convenient Synthesis of WS ₂ –MoS ₂ Heterostructures with Enhanced Photocatalytic Performance. Journal of Physical Chemistry C, 2019, 123, 27363-27368.	3.1	15
16	W Doping and Voltage Driven Metal–Insulator Transition in VO ₂ Nano-Films for Smart Switching Devices. ACS Applied Nano Materials, 2019, 2, 6738-6746.	5.0	36
17	Thermodynamic modeling of elastic mismatch strain energy on epitaxial growth of GalnN thin films. Journal of Alloys and Compounds, 2019, 798, 112-118.	5.5	1
18	Vanadium-Substituted Formation of Anatase (V, Ti)O ₂ : Enhanced Electrochemical Performance for Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 598-606.	5.1	4

#	Article	IF	Citations
19	Improved piezoelectric and strain performance of Na2B4O7-doped (Li,K,Na)NbO3 lead-free piezoceramics. Journal of Materials Science, 2019, 54, 1126-1135.	3.7	9
20	The synthesis of FeCoS ₂ and an insight into its physicochemical performance. CrystEngComm, 2018, 20, 2175-2182.	2.6	17
21	Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. Journal of Materials Science, 2018, 53, 1356-1364.	3.7	18
22	Temperature dependent conductivity of Bi4Ti3O12 ceramics induced by Sr dopants. Journal of Advanced Ceramics, 2018, 7, 256-265.	17.4	16
23	Nearâ€Infrared Luminescent Ternary Ag ₃ SbS ₃ Quantum Dots by in situ Conversion of Ag Nanocrystals with Sb(C ₉ H ₁₉ COOS) ₃ . Chemistry - A European Journal, 2018, 24, 18643-18647.	3.3	5
24	Neat Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the	8.0	40
25	Hydrothermal One-Step Synthesis of Highly Dispersed M-Phase VO ₂ Nanocrystals and Application to Flexible Thermochromic Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28627-28634.	8.0	56
26	The effect of the phase structure on physicochemical properties of TMO materials: a case of spinel to bunsenite. CrystEngComm, 2017, 19, 5809-5814.	2.6	15
27	Evolution of Structural and Electrical Properties of Oxygen-Deficient VO ₂ under Low Temperature Heating Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27135-27141.	8.0	52
28	Effect of Fe/Ta doping on structural, dielectric, and electrical properties of Bi ₄ Ti _{2.5} Fe _{0.25} Ta _{0.25} O ₁₂ ceramics. Journal of the American Ceramic Society, 2017, 100, 602-611.	3.8	14
29	Up-conversion luminescence behaviors in Er ³⁺ doped single crystal KNbO ₃ nanosheets. RSC Advances, 2016, 6, 113038-113044.	3.6	13
30	Synthesis of NiO nanostructures and their catalytic activity in the thermal decomposition of ammonium perchlorate. CrystEngComm, 2016, 18, 4836-4843.	2.6	39
31	The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2. Ceramics International, 2016, 42, 18764-18770.	4.8	34
32	Enhanced Fieldâ€Induced Strain in the Textured Leadâ€Free Ceramic. Journal of the American Ceramic Society, 2016, 99, 3985-3992.	3.8	15
33	Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance. Scientific Reports, 2016, 6, 27898.	3.3	32
34	Self-Assembling VO ₂ Nanonet with High Switching Performance at Wafer-Scale. Chemistry of Materials, 2015, 27, 7419-7424.	6.7	58
35	Self-assembly process of China rose-like β-Co(OH) ₂ and its topotactic conversion route to Co ₃ O ₄ with optimizable catalytic performance. CrystEngComm, 2015, 17, 8248-8255.	2.6	22