
Raquel Lebrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward a sustainable and cost-efficient biological-based platform for siloxanes removal. Critical Reviews in Environmental Science and Technology, 2023, 53, 70-86.	6.6	8
2	Optimization of acrylic-styrene latex-based biofilms as a platform for biological indoor air treatment. Chemosphere, 2022, 287, 132182.	4.2	12
3	Lignocellulosic residue valorization in a sequential process of solidâ€state fermentation and solid substrate anaerobic digestion. Journal of Chemical Technology and Biotechnology, 2022, 97, 1575-1584.	1.6	4
4	Optimization of nitrogen feeding strategies for improving polyhydroxybutyrate production from biogas by Methylocystis parvus str. OBBP in a stirred tank reactor. Chemosphere, 2022, 299, 134443.	4.2	5
5	Recent trends and advances in biogas upgrading and methanotrophs-based valorization. Chemical Engineering Journal Advances, 2022, 11, 100325.	2.4	12
6	Syngas biomethanation: Current state and future perspectives. Bioresource Technology, 2022, 358, 127436.	4.8	20
7	A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere, 2021, 262, 128376.	4.2	225
8	Innovative operational strategies in photosynthetic biogas upgrading in an outdoors pilot scale algal-bacterial photobioreactor. Chemosphere, 2021, 264, 128470.	4.2	27
9	Comparative Performance Evaluation of Commercial Packing Materials for Malodorants Abatement in Biofiltration. Applied Sciences (Switzerland), 2021, 11, 2966.	1.3	7
10	Recent advances in biological systems for improving indoor air quality. Reviews in Environmental Science and Biotechnology, 2021, 20, 363-387.	3.9	22
11	Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products. Biotechnology Advances, 2021, 53, 107772.	6.0	55
12	Volatile Siloxanes Emissions: Impact and Sustainable Abatement Perspectives. Trends in Biotechnology, 2021, 39, 1245-1248.	4.9	17
13	Influence of biogas supply regime on photosynthetic biogas upgrading performance in an enclosed algal-bacterial photobioreactor. Algal Research, 2021, 57, 102350.	2.4	16
14	Biogas-based production of glycogen by Nostoc muscorum: Assessing the potential of transforming CO2 into value added products. Chemosphere, 2021, 275, 129885.	4.2	5
15	Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase. Renewable Energy, 2021, 177, 52-60.	4.3	20
16	Ectoine Production from Biogas in Waste Treatment Facilities: A Techno-Economic and Sensitivity Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 17371-17380.	3.2	14
17	Elucidating the influence of environmental factors on biogas-based polyhydroxybutyrate production by Methylocystis hirsuta CSC1. Science of the Total Environment, 2020, 706, 135136.	3.9	16
18	A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. Waste Management, 2020, 102, 773-781.	3.7	19

#	Article	IF	CITATIONS
19	Optimization of photosynthetic biogas upgrading in closed photobioreactors combined with algal biomass production. Journal of Water Process Engineering, 2020, 38, 101554.	2.6	14
20	Influence of the diffuser type and liquid-to-biogas ratio on biogas upgrading performance in an outdoor pilot scale high rate algal pond. Fuel, 2020, 275, 117999.	3.4	16
21	Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium. Algal Research, 2020, 48, 101915.	2.4	6
22	Performance evaluation of a control strategy for photosynthetic biogas upgrading in a semi-industrial scale photobioreactor. Bioresource Technology, 2020, 307, 123207.	4.8	20
23	Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor. Waste Management, 2020, 113, 395-403.	3.7	36
24	Trimethylamine abatement in algal-bacterial photobioreactors. Environmental Science and Pollution Research, 2020, 27, 9028-9037.	2.7	3
25	Comparative Evaluation of Biogas Valorization into Electricity/Heat and Poly(hydroxyalkanoates) in Waste Treatment Plants: Assessing the Influence of Local Commodity Prices and Current Biotechnological Limitations. ACS Sustainable Chemistry and Engineering, 2020, 8, 7701-7709.	3.2	18
26	Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society. Chemosphere, 2020, 255, 126929.	4.2	40
27	Integrated innovative biorefinery for the transformation of municipal solid waste into biobased products. , 2020, , 41-80.		11
28	Comparative assessment of two biotrickling filters for siloxanes removal: Effect of the addition of an organic phase. Chemosphere, 2020, 251, 126359.	4.2	23
29	Strategies for N2 and O2 removal during biogas upgrading in a pilot algal-bacterial photobioreactor. Algal Research, 2020, 48, 101920.	2.4	11
30	Biogas treatment for H2S, CO2, and other contaminants removal. , 2020, , 153-176.		8
31	Microalgae-Based Processes as an Energy Efficient Platform for Water Reclamation and Resource Recovery. Advances in Science, Technology and Innovation, 2020, , 95-97.	0.2	Ο
32	Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. Science of the Total Environment, 2019, 688, 684-690.	3.9	15
33	Comparative evaluation of a biotrickling filter and a tubular photobioreactor for the continuous abatement of toluene. Journal of Hazardous Materials, 2019, 380, 120860.	6.5	31
34	CH4-Based Polyhydroxyalkanoate Production: A Step Further Towards a Sustainable Bioeconomy. , 2019, , 283-321.		7
35	Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor. Bioresource Technology, 2019, 279, 43-49.	4.8	63
36	A rapid regulation with different response intensities of the pmoA gene guarantees process robustness towards methane surges in continuous and feast-famine bioreactors. Biochemical Engineering Journal, 2019, 144, 193-197.	1.8	1

#	Article	IF	CITATIONS
37	Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor. Bioresource Technology, 2019, 280, 112-117.	4.8	37
38	Potential of Microalgae for Wastewater Treatment and Its Valorization into Added Value Products. , 2019, , 281-315.		5
39	Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis. Metabolic Engineering, 2019, 54, 191-199.	3.6	48
40	Assessing the potential of purple phototrophic bacteria for the simultaneous treatment of piggery wastewater and upgrading of biogas. Bioresource Technology, 2019, 281, 10-17.	4.8	28
41	Biological treatment of gas pollutants in partitioning bioreactors. Advances in Chemical Engineering, 2019, 54, 239-274.	0.5	11
42	Development of a control strategy to cope with biogas flowrate variations during photosynthetic biogas upgrading. Biomass and Bioenergy, 2019, 131, 105414.	2.9	16
43	Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World Journal of Microbiology and Biotechnology, 2019, 35, 16.	1.7	33
44	Effect of packing material configuration and liquid recirculation rate on the performance of a biotrickling filter treating VOCs. Journal of Chemical Technology and Biotechnology, 2018, 93, 2299-2306.	1.6	13
45	Biogas Purification and Upgrading Technologies. Biofuel and Biorefinery Technologies, 2018, , 239-276.	0.1	16
46	Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond. Bioresource Technology, 2018, 255, 354-358.	4.8	35
47	Technologies for the bioconversion of methane into more valuable products. Current Opinion in Biotechnology, 2018, 50, 128-135.	3.3	81
48	Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. Bioresource Technology, 2018, 263, 58-66.	4.8	61
49	Multiresidue analytical method for pharmaceuticals and personal care products in sewage and sewage sludge by online direct immersion SPME on-fiber derivatization – GCMS. Talanta, 2018, 186, 506-512.	2.9	30
50	Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions. Journal of Environmental Management, 2018, 214, 125-136.	3.8	36
51	Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor. Chemical Engineering Journal, 2018, 334, 691-697.	6.6	61
52	Feast-famine biofilter operation for methane mitigation. Journal of Cleaner Production, 2018, 170, 108-118.	4.6	34
53	Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: A step further in anaerobic digestion biorefineries. Chemical Engineering Journal, 2018, 333, 529-536.	6.6	87
54	Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. Bioresource Technology, 2018, 267, 401-407.	4.8	37

#	Article	IF	CITATIONS
55	Integral (VOCs, CO2, mercaptans and H2S) photosynthetic biogas upgrading using innovative biogas and digestate supply strategies. Chemical Engineering Journal, 2018, 354, 363-369.	6.6	37
56	Quantitative analysis of methane monooxygenase (MMO) explains process robustness in continuous and feast-famine bioreactors treating methane. Chemosphere, 2018, 212, 319-329.	4.2	4
57	Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. Algal Research, 2018, 33, 284-290.	2.4	49
58	Long-term photosynthetic CO2 removal from biogas and flue-gas: Exploring the potential of closed photobioreactors for high-value biomass production. Science of the Total Environment, 2018, 640-641, 1272-1278.	3.9	30
59	Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. Bioresource Technology, 2017, 232, 133-141.	4.8	84
60	Microbial community changes during different empty bed residence times and operational fluctuations in an air diffusion reactor for odor abatement. Science of the Total Environment, 2017, 590-591, 352-360.	3.9	16
61	Nitrous Oxide Abatement Coupled with Biopolymer Production As a Model GHG Biorefinery for Cost-Effective Climate Change Mitigation. Environmental Science & Technology, 2017, 51, 6319-6325.	4.6	12
62	Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. Bioresource Technology, 2017, 225, 336-342.	4.8	63
63	Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor. Applied Biochemistry and Biotechnology, 2017, 183, 1127-1145.	1.4	29
64	Assessing the influence of the carbon source on the abatement of industrial N 2 O emissions coupled with the synthesis of added-value bioproducts. Science of the Total Environment, 2017, 598, 765-771.	3.9	4
65	A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes. Algal Research, 2017, 25, 237-243.	2.4	71
66	Anoxic biodegradation of BTEX in a biotrickling filter. Science of the Total Environment, 2017, 587-588, 457-465.	3.9	61
67	Continuous abatement of methane coupled with ectoine production by Methylomicrobium alcaliphilum 20Z in stirred tank reactors: A step further towards greenhouse gas biorefineries. Journal of Cleaner Production, 2017, 152, 134-141.	4.6	42
68	Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: Evaluation of tubular algal-bacterial photobioreactor. Journal of CO2 Utilization, 2017, 21, 353-359.	3.3	30
69	Ectoine bio-milking in methanotrophs: A step further towards methane-based bio-refineries into high added-value products. Chemical Engineering Journal, 2017, 328, 44-48.	6.6	34
70	Biological conversion and revalorization of waste methane streams. Critical Reviews in Environmental Science and Technology, 2017, 47, 2133-2157.	6.6	10
71	Biogas upgrading using algal-bacterial processes. , 2017, , 283-304.		3
72	Technologies for the Bio-conversion of GHGs into High Added Value Products: Current State and Future Prospects. Green Energy and Technology, 2017, , 359-388.	0.4	2

#	Article	lF	CITATIONS
73	Biogas upgrading from vinasse digesters: a comparison between an anoxic biotrickling filter and an algalâ€bacterial photobioreactor. Journal of Chemical Technology and Biotechnology, 2016, 91, 2488-2495.	1.6	62
74	Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control. Algal Research, 2016, 17, 46-52.	2.4	83
75	Valorization of CH 4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH 4 abatement. Journal of Environmental Management, 2016, 182, 160-165.	3.8	25
76	Review of odour abatement in sewer networks. Journal of Environmental Chemical Engineering, 2016, 4, 3866-3881.	3.3	39
77	Toluene biodegradation in an algal-bacterial airlift photobioreactor: Influence of the biomass concentration and of the presence of an organic phase. Journal of Environmental Management, 2016, 183, 585-593.	3.8	25
78	Comparative performance evaluation of conventional and twoâ€phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations. Biotechnology and Bioengineering, 2016, 113, 1203-1212.	1.7	30
79	Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. Journal of Environmental Management, 2016, 171, 11-20.	3.8	33
80	Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter. Chemosphere, 2016, 144, 97-106.	4.2	49
81	Two-liquid phase partitioning biotrickling filters for methane abatement: Exploring the potential of hydrophobic methanotrophs. Journal of Environmental Management, 2015, 151, 124-131.	3.8	28
82	Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling. Bioresource Technology, 2015, 196, 685-693.	4.8	24
83	Selection of odour removal technologies in wastewater treatment plants: A guideline based on Life Cycle Assessment. Journal of Environmental Management, 2015, 149, 77-84.	3.8	65
84	Evaluating odour control technologies using reliability and sustainability criteria – a case study for water treatment plants. Water Science and Technology, 2014, 69, 1426-1433.	1.2	6
85	Deterioration of organic packing materials commonly used in air biofiltration: Effect of VOC-packing interactions. Journal of Environmental Management, 2014, 137, 93-100.	3.8	13
86	Hexane biodegradation in two-liquid phase biofilters operated with hydrophobic biomass: Effect of the organic phase-packing media ratio and the irrigation rate. Chemical Engineering Journal, 2014, 237, 162-168.	6.6	29
87	Comparative assessment of a biofilter, a biotrickling filter and a hollow fiber membrane bioreactor for odor treatment in wastewater treatment plants. Water Research, 2014, 49, 339-350.	5.3	84
88	Methane abatement in a gas-recycling biotrickling filter: Evaluating innovative operational strategies to overcome mass transfer limitations. Chemical Engineering Journal, 2014, 253, 385-393.	6.6	69
89	Abatement of odorant compounds in one- and two-phase biotrickling filters under steady and transient conditions. Applied Microbiology and Biotechnology, 2013, 97, 4627-4638.	1.7	47
90	Step-feed biofiltration: A low cost alternative configuration for off-gas treatment. Water Research, 2013, 47, 4312-4321.	5.3	42

#	Article	IF	CITATIONS
91	A membrane bioreactor for the simultaneous treatment of acetone, toluene, limonene and hexane at trace level concentrations. Water Research, 2013, 47, 2199-2212.	5.3	39
92	Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Applied Microbiology and Biotechnology, 2013, 97, 2277-2303.	1.7	108
93	Characterization and biofiltration of a real odorous emission from wastewater treatment plant sludge. Journal of Environmental Management, 2013, 116, 50-57.	3.8	39
94	H2S Emissions from a Submerged Pilot-Scale Fixed Bed Biofilm Reactor. Clean - Soil, Air, Water, 2013, 41, 469-472.	0.7	0
95	AIR BIOFILTRATION APPLIED TO ODOR TREATMENT. , 2012, , 149-174.		3
96	Sustainability and Robustness Assessment of Odor Control Technology at Water Treatment Plants. Proceedings of the Water Environment Federation, 2012, 2012, 108-122.	0.0	0
97	A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnology Advances, 2012, 30, 1354-1363.	6.0	108
98	Toluene mass transfer characterization in a biotrickling filter. Biochemical Engineering Journal, 2012, 60, 44-49.	1.8	53
99	Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresource Technology, 2012, 109, 38-45.	4.8	86
100	A Comparative Analysis of Odour Treatment Technologies in Wastewater Treatment Plants. Environmental Science & Technology, 2011, 45, 1100-1106.	4.6	154
101	Odor Assessment and Management in Wastewater Treatment Plants: A Review. Critical Reviews in Environmental Science and Technology, 2011, 41, 915-950.	6.6	162
102	A comparative assessment of biofiltration and activated sludge diffusion for odour abatement. Journal of Hazardous Materials, 2011, 190, 622-630.	6.5	58
103	H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: A comparative study. Water Research, 2010, 44, 3905-3914.	5.3	75
104	Monitoring techniques for odour abatement assessment. Water Research, 2010, 44, 5129-5149.	5.3	153