Ricardo Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848249/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 2005, 43, 117-139.	3.5	395
2	Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO Journal, 2003, 22, 5561-5570.	3.5	220
3	Extremely High Mutation Rate of a Hammerhead Viroid. Science, 2009, 323, 1308-1308.	6.0	215
4	A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue. Analytical Biochemistry, 1978, 88, 605-611.	1.1	197
5	Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3711-3715.	3.3	194
6	Small RNAs containing the pathogenic determinant of a chloroplastâ€replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant Journal, 2012, 70, 991-1003.	2.8	192
7	Chrysanthemum chlorotic mottle viroid: Unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11262-11267.	3.3	156
8	Current status of viroid taxonomy. Archives of Virology, 2014, 159, 3467-3478.	0.9	151
9	Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12813-12817.	3.3	148
10	RNA-Dependent RNA Polymerase 6 Delays Accumulation and Precludes Meristem Invasion of a Viroid That Replicates in the Nucleus. Journal of Virology, 2010, 84, 2477-2489.	1.5	147
11	Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing. Journal of Virology, 2002, 76, 13094-13096.	1.5	146
12	Viroids: Survivors from the RNA World?. Annual Review of Microbiology, 2014, 68, 395-414.	2.9	142
13	Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 2016, 7, 1325.	1.5	142
14	Sequences of Citrus Tristeza VirusSeparated in Time and Space Are Essentially Identical. Journal of Virology, 2000, 74, 6856-6865.	1.5	133
15	Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus RNA Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5631-5634.	3.3	116
16	Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biology, 2011, 8, 200-206.	1.5	114
17	A Chloroplastic RNA Polymerase Resistant to Tagetitoxin Is Involved in Replication of Avocado Sunblotch Viroid. Virology, 2000, 268, 218-225.	1.1	113
18	Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in Virus Research, 2000, 55, 271-323	0.9	113

#	Article	IF	CITATIONS
19	Post-Transcriptional Gene Silencing of the p23 Silencing Suppressor of Citrus tristeza virus Confers Resistance to the Virus in Transgenic Mexican Lime. Plant Molecular Biology, 2006, 60, 153-165.	2.0	110
20	Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 2007, 3, e182.	2.1	107
21	A proposed scheme for viroid classification and nomenclature. Archives of Virology, 1998, 143, 623-629.	0.9	106
22	Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 2008, 371, 44-53.	1.1	106
23	The complete genome sequence of the major component of a mild citrus tristeza virus isolate Journal of General Virology, 1999, 80, 811-816.	1.3	106
24	A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO Journal, 2002, 21, 749-759.	3.5	103
25	Molecular Variability of the 5′- and 3′-Terminal Regions of Citrus Tristeza Virus RNA. Phytopathology, 1998, 88, 685-691.	1.1	101
26	A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. Plant Cell, 2007, 19, 3610-3626.	3.1	100
27	Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation <i>In Vivo</i> . Journal of Virology, 2014, 88, 11933-11945.	1.5	97
28	Detection of Viroid and Viroid-like RNAs from Grapevine. Journal of General Virology, 1985, 66, 2095-2102.	1.3	96
29	Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 2015, 209, 136-145.	1.1	96
30	Genomic Structure of Three Phenotypically Different Isolates of Peach Latent Mosaic Viroid: Implications of the Existence of Constraints Limiting the Heterogeneity of Viroid Quasispecies. Journal of Virology, 1998, 72, 7397-7406.	1.5	95
31	Viroids: The Noncoding Genomes. Seminars in Virology, 1997, 8, 65-73.	4.1	93
32	Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Reports, 2006, 7, 593-598.	2.0	93
33	Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 2003, 313, 492-501.	1.1	90
34	Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13805-13810.	3.3	89
35	Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Letters, 2004, 567, 42-48.	1.3	88
36	Identification of a retroviroid-like element from plants Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6856-6860.	3.3	85

#	Article	IF	CITATIONS
37	Eggplant Latent Viroid , the Candidate Type Species for a New Genus within the Family Avsunviroidae (Hammerhead Viroids). Journal of Virology, 2003, 77, 6528-6532.	1.5	82
38	Deep Sequencing of the Small RNAs Derived from Two Symptomatic Variants of a Chloroplastic Viroid: Implications for Their Genesis and for Pathogenesis. PLoS ONE, 2009, 4, e7539.	1.1	82
39	Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 2012, 94, 1474-1480.	1.3	81
40	Involvement of the Chloroplastic Isoform of tRNA Ligase in the Replication of Viroids Belonging to the Family <i>Avsunviroidae</i> . Journal of Virology, 2012, 86, 8269-8276.	1.5	80
41	Mapping the molecular determinant of pathogenicity in a hammerhead viroid: A tetraloop within the in vivo branched RNA conformation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9960-9965.	3.3	77
42	The 23-kDa Protein Coded by the 3′-Terminal Gene of Citrus Tristeza Virus Is an RNA-Binding Protein. Virology, 2000, 269, 462-470.	1.1	77
43	Viroid Replication: Rolling-Circles, Enzymes and Ribozymes. Viruses, 2009, 1, 317-334.	1.5	77
44	Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6792-6797.	3.3	76
45	Pepper chat fruit viroid: Biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Research, 2009, 144, 209-214.	1.1	75
46	Viroids. , 2003, , .		74
47	Properties of a cell-free system for synthesis of citrus exocortis viroid. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6285-6288.	3.3	73
48	Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 1987, 68, 3201-3205.	1.3	73
49	Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology, 2011, 75, 607-619.	2.0	73
50	Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Molecular Plant Pathology, 2001, 2, 27-36.	2.0	70
51	Viral-Like Symptoms Induced by the Ectopic Expression of the p23 Gene of Citrus tristeza virus Are Citrus Specific and Do Not Correlate with the Pathogenicity of the Virus Strain. Molecular Plant-Microbe Interactions, 2005, 18, 435-445.	1.4	69
52	Citrus viroid V: Molecular characterization and synergistic interactions with other members of the genus Apscaviroid. Virology, 2008, 370, 102-112.	1.1	68
53	Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs. Frontiers in Microbiology, 2012, 3, 217.	1.5	68
54	Cherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. I. Characterization of a new species in the genus Chrysovirus. Journal of General Virology, 2004, 85, 3389-3397.	1.3	65

#	Article	IF	CITATIONS
55	Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology, 2007, 367, 298-306.	1.1	65
56	Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO Journal, 2000, 19, 2662-2670.	3.5	63
57	Viroids and Hepatitis Delta Virus. Seminars in Liver Disease, 2012, 32, 201-210.	1.8	63
58	Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. Journal of General Virology, 1999, 80, 2239-2252.	1.3	62
59	Transformation of Mexican lime with an intronâ€hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of <i>Citrus tristeza virus</i> confers complete resistance to the virus. Plant Biotechnology Journal, 2012, 10, 597-608.	4.1	60
60	Detection of avocado sunblotch viroid in chloroplasts of avocado leaves by in situ hybridization. Archives of Virology, 1994, 138, 385-390.	0.9	59
61	Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and severe isolates. Archives of Virology, 2003, 148, 2325-2340.	0.9	58
62	A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability. Rna, 2005, 11, 1073-1083.	1.6	55
63	Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 2006, 87, 231-240.	1.3	54
64	Complexes Containing Both Polarity Strands of Avocado Sunblotch Viroid: Identification in Chloroplasts and Characterization. Virology, 1999, 253, 77-85.	1.1	53
65	Accumulation of transgeneâ€derived siRNAs is not sufficient for RNAiâ€mediated protection against <i>Citrus tristeza virus</i> in transgenic Mexican lime. Molecular Plant Pathology, 2010, 11, 33-41.	2.0	53
66	ICTV Virus Taxonomy Profile: Avsunviroidae. Journal of General Virology, 2018, 99, 611-612.	1.3	53
67	The strands of both polarities of a small circular RNA from carnation self-cleavein vitrothrough alternative double- and single-hammerhead structures. Nucleic Acids Research, 1992, 20, 6323-6329.	6.5	52
68	A Short Double-Stranded RNA Motif of Peach Latent Mosaic Viroid Contains the Initiation and the Self-Cleavage Sites of Both Polarity Strands. Journal of Virology, 2005, 79, 12934-12943.	1.5	52
69	New defective RNAs from citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation Journal of General Virology, 1999, 80, 817-821.	1.3	52
70	Characterization of viroid-like RNAs associated with the citrus exocortis syndrome. Virology, 1986, 150, 75-84.	1.1	51
71	Chrysanthemum Chlorotic Mottle Viroid RNA: Dissection of the Pathogenicity Determinant and Comparative Fitness of Symptomatic and Non-symptomatic Variants. Journal of Molecular Biology, 2002, 321, 411-421.	2.0	51
72	Polymorphism of the 5′ terminal region of Citrus tristeza virus (CTV) RNA: Incidence of three sequence types in isolates of different origin and pathogenicity. Archives of Virology, 2001, 146, 27-40.	0.9	50

#	Article	IF	CITATIONS
73	Structure–function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop–loop interaction motif conserved in most natural hammerheads. Nucleic Acids Research, 2009, 37, 368-381.	6.5	50
74	The sequence of a viroid from grapevine closely related to severe isolates of citrus exocortis viroid. Nucleic Acids Research, 1987, 15, 4203-4210.	6.5	49
75	Advances in Viroid-Host Interactions. Annual Review of Virology, 2021, 8, 305-325.	3.0	49
76	Hammerhead Ribozyme Structure and Function in Plant RNA Replication. Methods in Enzymology, 2001, 341, 540-552.	0.4	48
77	Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 2011, 156, 529-533.	0.9	47
78	Dissecting the secondary structure of the circular RNA of a nuclear viroid <i>in vivo</i> : A "naked― rod-like conformation similar but not identical to that observed <i>in vitro</i> . RNA Biology, 2017, 14, 1046-1054.	1.5	46
79	Phylogenetic Analysis of Viroid and Viroid-Like Satellite RNAs from Plants: A Reassessment. Journal of Molecular Evolution, 2001, 53, 155-159.	0.8	45
80	Citrus tristeza virus p23: Determinants for Nucleolar Localization and Their Influence on Suppression of RNA Silencing and Pathogenesis. Molecular Plant-Microbe Interactions, 2013, 26, 306-318.	1.4	44
81	Identification in eggplant of a variant of citrus exocortis viroid (CEVd) with a 96 nucleotide duplication in the right terminal region of the rod-like secondary structure. Virus Research, 2003, 97, 145-149.	1.1	43
82	Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research, 2018, 249, 8-15.	1.1	43
83	Monomeric Linear RNA of <i>Citrus Exocortis Viroid</i> Resulting from Processing In Vivo Has 5′-Phosphomonoester and 3′-Hydroxyl Termini: Implications for the RNase and RNA Ligase Involved in Replication. Journal of Virology, 2008, 82, 10321-10325.	1.5	42
84	Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathogens, 2017, 13, e1006547.	2.1	41
85	Citrus viroid V: Occurrence, Host Range, Diagnosis, and Identification of New Variants. Phytopathology, 2008, 98, 1199-1204.	1.1	40
86	Dahlia latent viroid: a recombinant new species of the family Pospiviroidae posing intriguing questions about its origin and classification. Journal of General Virology, 2013, 94, 711-719.	1.3	40
87	Pear Blister Canker Viroid is a Member of the Apple Scar Skin Subgroup (apscaviroids) and also has Sequence Homology with Viroids from other Subgroups. Journal of General Virology, 1992, 73, 2503-2507.	1.3	39
88	The conserved structures of the $5\hat{a}\in^2$ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology, 2003, 317, 50-64.	1.1	39
89	A 451-nucleotide circular RNA from cherry with hammerhead ribozymes in its strands of both polarities. Journal of Virology, 1997, 71, 6603-6610.	1.5	39
90	Cherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. II. Characterization of a new species in the genus Partitivirus. Journal of General Virology, 2004, 85, 3399-3403.	1.3	37

#	Article	IF	CITATIONS
91	Some properties of the viroid inducing peach latent mosaic disease. Research in Virology, 1990, 141, 109-118.	0.7	36
92	Peach latent mosaic viroid: not so latent. Molecular Plant Pathology, 2006, 7, 209-221.	2.0	36
93	Pathogenesis by subviral agents: viroids and hepatitis delta virus. Current Opinion in Virology, 2016, 17, 87-94.	2.6	36
94	Biological Properties of Apple Scar Skin Viroid: Isolates, Host Range, Different Sensitivity of Apple Cultivars, Elimination, and Natural Transmission. Plant Disease, 1999, 83, 768-772.	0.7	35
95	Ectopic expression of the p23 silencing suppressor of <i>Citrus tristeza virus</i> differentially modifies viral accumulation and tropism in two transgenic woody hosts. Molecular Plant Pathology, 2011, 12, 898-910.	2.0	34
96	The resistance of sour orange to <i>Citrus tristeza virus</i> is mediated by both the salicylic acid and RNA silencing defence pathways. Molecular Plant Pathology, 2017, 18, 1253-1266.	2.0	33
97	ICTV Virus Taxonomy Profile: Pospiviroidae. Journal of General Virology, 2021, 102, .	1.3	33
98	Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 2006, 34, 5613-5622.	6.5	32
99	Identification and molecular properties of a 306 nucleotide viroid associated with apple dimple fruit disease. Journal of General Virology, 1996, 77, 2833-2837.	1.3	31
100	Trans -cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA. Nucleic Acids Research, 2011, 39, 2432-2444.	6.5	31
101	Citrus tristeza virus p23: a unique protein mediating key virus–host interactions. Frontiers in Microbiology, 2013, 4, 98.	1.5	31
102	The DNA of a Plant Retroviroid-Like Element Is Fused to Different Sites in the Genome of a Plant Pararetrovirus and Shows Multiple Forms with Sequence Deletions. Journal of Virology, 2000, 74, 10390-10400.	1.5	30
103	Detection of citrus exocortis viroid in crude extracts by dot-blot hybridization: Conditions for reducing spurious hybridization results and for enhancing the sensitivity of the technique. Journal of Virological Methods, 1986, 13, 161-169.	1.0	28
104	An Extra Nucleotide in the Consensus Catalytic Core of a Viroid Hammerhead Ribozyme. Journal of Biological Chemistry, 2001, 276, 34586-34593.	1.6	26
105	The complete nucleotide sequence of a Spanish isolate of Citrus psorosis virus: comparative analysis with other ophioviruses. Archives of Virology, 2005, 150, 167-176.	0.9	26
106	Viroid Diseases in Pome and Stone Fruit Trees and Koch's Postulates: A Critical Assessment. Viruses, 2018, 10, 612.	1.5	26
107	Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiology Reviews, 2020, 44, 386-398.	3.9	26
108	PEACH LATENT MOSAIC AND PEAR BLISTER CANKER VIROIDS: DETECTION BY MOLECULAR HYBRIDIZATION AND RELATIONSHIPS WITH SPECIFIC MALADIES AFFECTING PEACH AND PEAR TREES Acta Horticulturae, 1995, , 515-521.	0.1	26

#	Article	IF	CITATIONS
109	Characterization of RNAs specific to avocado sunblotch viroid synthesized in Vitro by a cell-free system from infected avocado leaves. Virology, 1992, 186, 481-488.	1.1	25
110	Existence in vivo of the loop E motif in potato spindle tuber viroid RNA. Archives of Virology, 2007, 152, 1389-1393.	0.9	25
111	Identification of a new viroid as the putative causal agent of pear blister canker disease. Journal of General Virology, 1991, 72, 1199-1204.	1.3	24
112	Pear blister canker viroid: sequence variability and causal role in pear blister canker disease. Journal of General Virology, 1995, 76, 2625-2629.	1.3	24
113	Apple dimple fruit viroid: Fulfillment of Koch's Postulates and Symptom Characteristics. Plant Disease, 2001, 85, 179-182.	0.7	24
114	Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Research, 2015, 43, 2313-2325.	6.5	24
115	Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Archives of Virology, 2007, 152, 1115-1126.	0.9	23
116	Viroids with Hammerhead Ribozymes: Some Unique Structural and Functional Aspects with Respect to Other Members of the Group. Biological Chemistry, 1999, 380, 849-854.	1.2	22
117	Molecular characterization of the largest mycoviral-like double-stranded RNAs associated with Amasya cherry disease, a disease of presumed fungal aetiology. Journal of General Virology, 2006, 87, 3113-3117.	1.3	22
118	Viroid-like RNAs from cherry trees affected by leaf scorch disease: further data supporting their association with mycoviral double-stranded RNAs. Archives of Virology, 2014, 159, 589-593.	0.9	22
119	Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from â€ ⁻ Pacific Gala' apple (<i>Malus domestica</i>) in Canada. Canadian Journal of Plant Pathology, 2017, 39, 342-353.	0.8	22
120	In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Research, 1998, 26, 1877-1883.	6.5	21
121	STUDIES ON THE DETECTION, TRANSMISSION AND DISTRIBUTION OF PEACH LATENT MOSAIC VIROID IN PEACH TREES. Acta Horticulturae, 1992, , 325-330.	0.1	20
122	A naked plant-specific RNA ten-fold smaller than the smallest known viral RNA: the viroid. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2001, 324, 943-952.	0.8	20
123	Citrus exocortis viroid and Hop Stunt viroid Doubly infecting grapevines in Brazil. Tropical Plant Pathology, 2006, 31, 440-446.	0.3	20
124	The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in their <i>in vivo</i> RNA conformations. RNA Biology, 2016, 13, 83-97.	1.5	20
125	The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. Journal of General Virology, 2017, 98, 1913-1922.	1.3	20
126	Sequences of the smallest double-stranded RNAs associated with cherry chlorotic rusty spot and Amasya cherry diseases. Archives of Virology, 2008, 153, 759-762.	0.9	19

#	Article	IF	CITATIONS
127	How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biology, 2019, 16, 906-917.	1.5	19
128	Sequence variability in avocado sunblotch viroid (ASBV). Nucleic Acids Research, 1988, 16, 9864-9864.	6.5	18
129	Cytopathic Effects Incited by Viroid RNAs and Putative Underlying Mechanisms. Frontiers in Plant Science, 2012, 3, 288.	1.7	18
130	Some properties of the CEV-P1 protein from citrus exocortis viroid-infected Gynura aurantiaca DC. Physiological Plant Pathology, 1978, 13, 193-201.	1.4	17
131	The relationship between plant growth substance content and infection of Gynura aurantiaca DC by citrus exocortis viroid. Physiological Plant Pathology, 1978, 13, 355-363.	1.4	17
132	Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23. Plant Molecular Biology, 2018, 98, 363-373.	2.0	17
133	Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biology, 2019, 16, 295-308.	1.5	17
134	Pear Blister Canker Viroid: Host Range and Improved Bioassay with Two New Pear Indicators, Fieud 37 and Fieud 110. Plant Disease, 1999, 83, 419-422.	0.7	16
135	Viroids: Molecular implements for dissecting RNA trafficking in plants. RNA Biology, 2008, 5, 128-131.	1.5	16
136	Synthesis of RNAs Specific to Citrus Exocortis Viroid by a Fraction Rich in Nuclei from Infected Gynura aurantiaca: Examination of the Nature of the Products and Solubilization of the Polymerase-Template Complex. Journal of General Virology, 1989, 70, 2695-2706.	1.3	15
137	Close structural relationship between two hammerhead viroid-like RNAs associated with cherry chlorotic rusty spot disease. Archives of Virology, 2006, 151, 1539-1549.	0.9	15
138	Processing of RNAs of the Family Avsunviroidae in Chlamydomonas reinhardtii Chloroplasts. Journal of Virology, 2007, 81, 4363-4366.	1.5	15
139	Engineering resistance against viroids. Current Opinion in Virology, 2017, 26, 1-7.	2.6	15
140	Viroid Taxonomy. , 2017, , 135-146.		15
141	An Element of the Tertiary Structure of Peach Latent Mosaic Viroid RNA Revealed by UV Irradiation. Journal of Virology, 2006, 80, 9336-9340.	1.5	14
142	A pospiviroid from symptomless portulaca plants closely related to iresine viroid 1. Virus Research, 2015, 205, 22-26.	1.1	14
143	Symptomatic plant viroid infections in phytopathogenic fungi: A request for a critical reassessment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10126-10128.	3.3	14
144	ISOLATION OF A VIROID-LIKE RNA ASSOCIATED WITH PEACH LATENT MOSAIC DISEASE Acta Horticulturae, 1989, , 325-332.	0.1	13

#	Article	IF	CITATIONS
145	A general strategy for cloning viroids and other small circular RNAs that uses minimal amounts of template and does not require prior knowledge of its sequence. Journal of Virological Methods, 1996, 56, 59-66.	1.0	13
146	Detection of peach latent mosaic viroid in Australia. Australasian Plant Pathology, 1999, 28, 80.	0.5	13
147	Diagnosis of "maladie des feuilles cassantes―or brittle leaf disease of date palms by detection of associated chloroplast encoded double stranded RNAs. Molecular and Cellular Probes, 2006, 20, 366-370.	0.9	13
148	Reassessing species demarcation criteria in viroid taxonomy by pairwise identity matrices. Virus Evolution, 2021, 7, veab001.	2.2	13
149	Degradome Analysis of Tomato and Nicotiana benthamiana Plants Infected with Potato Spindle Tuber Viroid. International Journal of Molecular Sciences, 2021, 22, 3725.	1.8	13
150	Characterization of multiple circular RNAs derived from a plant viroid-like RNA by sequence deletions and duplications. Rna, 1995, 1, 734-44.	1.6	13
151	A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evolution, 2022, 8, veab107.	2.2	13
152	Interactions between Citrus Exocortis and Potato Spindle Tuber Viroids in Plants of <i>Gynura aurantiaca</i> and <i>Lycopersicon esculentum</i> . Intervirology, 1989, 30, 10-17.	1.2	12
153	Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs. Journal of Virological Methods, 1998, 73, 1-9.	1.0	12
154	Detection of Avocado Sunblotch Viroid in Spain by Double Polyacrylamide Gel Eletrophoresis. Journal of Phytopathology, 1987, 119, 184-189.	0.5	11
155	Analysis of Viroid Replication. Methods in Molecular Biology, 2008, 451, 167-183.	0.4	11
156	Is the conformation of viroids involved in their pathogenicity?. Journal of Theoretical Biology, 1984, 108, 519-527.	0.8	10
157	The 5' end Generated in the in vitro Self-Cleavage Reaction of Avocado Sunblotch Viroid RNAs is Present in Naturally Occurring Linear Viroid Molecules. Journal of General Virology, 1993, 74, 907-910.	1.3	10
158	Origin and Evolution of Viroids. , 2017, , 125-134.		10
159	Altered Pattern of Root Formation on Cuttings of <i>Gynura aurantiaca</i> Infected by Citrus Exocortis Viroid. Phytopathology, 1981, 71, 964.	1.1	10
160	Subcellular location of avocado sunblotch viroid in avocado leaves. Plant Science, 1990, 67, 237-244.	1.7	9
161	IDENTIFICATION OF APPLE DIMPLE FRUIT VIROID IN DIFFERENT COMMERCIAL VARIETIES OF APPLE GROWN IN ITALY. Acta Horticulturae, 1998, , 595-602.	0.1	9
162	A Set of Novel RNAs Transcribed from the Chloroplast Genome Accumulates in Date Palm Leaflets Affected by Brittle Leaf Disease. Phytopathology, 2008, 98, 337-344.	1.1	9

3

#	Article	IF	CITATIONS
163	Symptoms induced by transgenic expression of p23 from <i>Citrus tristeza virus</i> in phloemâ€associated cells of <scp>M</scp> exican lime mimic virus infection without the aberrations accompanying constitutive expression. Molecular Plant Pathology, 2015, 16, 388-399.	2.0	9
164	BOTH THE SMALL CIRCULAR RNAs AND THE DOUBLE-STRANDED RNAS ASSOCIATED WITH THE CHLOROTIC RUSTY SPOT DISEASE OF SWEET CHERRY ARE ALSO FOUND IN SOUR CHERRY WITH SIMILAR SYMPTOMS. Acta Horticulturae, 1998, , 291-298.	0.1	8
165	Viroids. , 2008, , 332-342.		8
166	Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Scientific Reports, 2017, 7, 42825.	1.6	8
167	Citrus tristeza virus: Host RNA Silencing and Virus Counteraction. Methods in Molecular Biology, 2019, 2015, 195-207.	0.4	8
168	EXPERIMENTAL EVIDENCE THAT APPLE DIMPLE FRUIT VIROID DOES NOT SPREAD NATURALLY. Acta Horticulturae, 2004, , 357-360.	0.1	6
169	Viróides e virusóides: relÃquias do mundo de RNA. Tropical Plant Pathology, 2006, 31, 229-246.	0.3	6
170	Structure and Evolution of Viroids. , 2008, , 43-64.		6
171	Viroid Replication. , 2017, , 71-81.		6
172	Other Apscaviroids Infecting Pome Fruit Trees. , 2017, , 229-241.		6
173	IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF PEAR BLISTER CANKER VIROID ISOLATES IN CAMPANIA (SOUTHERN ITALY). Acta Horticulturae, 2004, , 367-371.	0.1	5
174	A group I plant intron accumulates as circular RNA forms with extensive 5' deletions in vivo. Rna, 1996, 2, 928-36.	1.6	5
175	Fractionation with ethanol of nucleic acids from viroid-infected plants. Analytical Biochemistry, 1983, 134, 479-482.	1.1	4
176	Callose Deposition in Plasmodesmata and Viroid Invasion of the Shoot Apical Meristem. Frontiers in Microbiology, 2016, 7, 52.	1.5	4
177	Identification and Preliminary Characterization of a Viroid-like RNA in Atalantia citroides. International Organization of Citrus Virologists Conference Proceedings, 2005, 16, .	0.1	4
178	Mode of action of lactate dehydrogenase isozymes. Trends in Biochemical Sciences, 1979, 4, N32-N33.	3.7	3
179	A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2Â′–5′ RNA ligase. RNA Biology, 2012, 9, 326-333.	1.5	3

180 Hammerhead Ribozymes Against Virus and Viroid RNAs. , 2012, , 411-427.

#	Article	IF	CITATIONS
181	e-Book on Closteroviridae. Frontiers in Microbiology, 2013, 4, 411.	1.5	3
182	Evolutionary analysis of Citrus tristeza virus outbreaks in Calabria, Italy: two rapidly spreading and independent introductions of mild and severe isolates. European Journal of Plant Pathology, 2014, 140, 607-613.	0.8	3
183	Chrysanthemum Chlorotic Mottle Viroid. , 2017, , 331-338.		3
184	Viroid Pathogenesis. , 2017, , 93-103.		2
185	Isolation and Characterization in Gynura aurantiaca of a Possible Citrus Rhabdovirus. Journal of Phytopathology, 1988, 123, 69-78.	0.5	1
186	Molecular Biology of Viroids. , 1999, , 225-239.		1
187	Digital radar-gram processing for water pipelines leak detection. , 2006, , .		1
188	VIROIDS IN ORNAMENTALS. Acta Horticulturae, 2011, , 23-34.	0.1	1
189	Iresine Viroid 1 and a Potential New Pospiviroid From Portulaca. , 2017, , 191-198.		1
190	Peach Latent Mosaic Viroid in Infected Peach. , 2017, , 307-316.		1
191	Genome Editing by CRISPR-Based Technology. , 2017, , 531-540.		1
192	Methods for Producing Transgenic Plants Resistant to CTV. Methods in Molecular Biology, 2019, 2015, 229-243.	0.4	1
193	Revisiting the cysteine-rich proteins encoded in the 3'-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. Archives of Virology, 2020, 165, 2229-2239.	0.9	1
194	Szent-Györgyi's dogma — hypothesize with a smile. Trends in Biochemical Sciences, 1979, 4, N134.	3.7	0
195	RNA INTERFERENCE AGAINST THE THREE CITRUS TRISTEZA VIRUS GENES ENCODING SILENCING SUPPRESSORS CONFERS COMPLETE RESISTANCE TO THE VIRUS IN TRANSGENIC MEXICAN LIME PLANTS. Acta Horticulturae, 2015, , 703-709.	0.1	0
196	Highly Abundant Small Interfering RNAs Derived from a Satellite RNA Contribute to Symptom Attenuation by Binding Helper Virus-Encoded RNA Silencing Suppressors. Frontiers in Plant Science, 2016, 7, 692.	1.7	0
197	Dahlia Latent Viroid. , 2017, , 211-216.		0

#	Article	IF	CITATIONS
199	Viroids (Pospiviroidae and Avsunviroidae). , 2021, , 852-861.		0
200	INTRODUCTORY REMARKS TO THE SESSION "ETIOLOGY OF VIRUS AND VIROID DISEASES OF FRUIT TREES― Acta Horticulturae, 2001, , 307-307.	0.1	0
201	Post-Transcriptional Gene Silencing of the p23 Silencing Suppressor of Citrus tristeza Virus Confers Resistance to the Virus in Transgenic Mexican Lime. , 2007, , 211-213.		0
202	Viroid. , 2015, , 2603-2605.		0