
Pekka Katajisto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic determination of cell fate through selective inheritance of mitochondria. Nature Cell Biology, 2022, 24, 148-154.	10.3	46
2	Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology, 2022, 40, 1042-1055.	17.5	135
3	Retrograde movements determine effective stem cell numbers in the intestine. Nature, 2022, 607, 548-554.	27.8	26
4	Polycomb Repressive Complex 2 Regulates Genes Necessary for Intestinal Microfold Cell (M Cell) Development. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 873-889.	4.5	5
5	Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk. Development (Cambridge), 2021, 148, .	2.5	8
6	NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature, 2021, 594, 430-435.	27.8	122
7	<i>WNT2</i> activation through proximal germline deletion predisposes to small intestinal neuroendocrine tumors and intestinal adenocarcinomas. Human Molecular Genetics, 2021, 30, 2429-2440.	2.9	6
8	An image analysis method for regionally defined cellular phenotyping of the Drosophila midgut. Cell Reports Methods, 2021, 1, 100059.	2.9	7
9	Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nature Communications, 2021, 12, 6741.	12.8	26
10	LKB1 Represses ATOH1 via PDK4 and Energy Metabolism and Regulates Intestinal Stem Cell Fate. Gastroenterology, 2020, 158, 1389-1401.e10.	1.3	29
11	The role of stem cell niche in intestinal aging. Mechanisms of Ageing and Development, 2020, 191, 111330.	4.6	20
12	Intestinal estrogen receptor beta suppresses colon inflammation and tumorigenesis in both sexes. Cancer Letters, 2020, 492, 54-62.	7.2	42
13	Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature, 2019, 571, 398-402.	27.8	166
14	Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. Journal of Investigative Dermatology, 2019, 139, 2272-2280.e12.	0.7	15
15	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	3.1	13
16	Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell, 2018, 22, 769-778.e4.	11.1	266
17	A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature, 2017, 545, 355-359.	27.8	265
18	In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nature Biotechnology, 2017, 35, 569-576.	17.5	248

Ρεκκά Καταjisto

#	Article	IF	CITATIONS
19	Stromal Lkb1 deficiency leads to gastrointestinal tumorigenesis involving the IL-11–JAK/STAT3 pathway. Journal of Clinical Investigation, 2017, 128, 402-414.	8.2	56
20	Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science, 2015, 348, 340-343.	12.6	463
21	Depletion of Rictor, an essential protein component of m <scp>TORC</scp> 2, decreases male lifespan. Aging Cell, 2014, 13, 911-917.	6.7	99
22	Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E388-97.	7.1	89
23	mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature, 2012, 486, 490-495.	27.8	631
24	Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity. Science, 2012, 335, 1638-1643.	12.6	1,022
25	Impaired Gastric Gland Differentiation in Peutz-Jeghers Syndrome. American Journal of Pathology, 2010, 176, 2467-2476.	3.8	17
26	LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nature Genetics, 2008, 40, 455-459.	21.4	110
27	Lkb1 is required for TGFβ-mediated myofibroblast differentiation. Journal of Cell Science, 2008, 121, 3531-3540.	2.0	36
28	LKB1 in endothelial cells is required for angiogenesis and TGFβ-mediated vascular smooth muscle cell recruitment. Development (Cambridge), 2008, 135, 2331-2338.	2.5	36
29	The LKB1 tumor suppressor kinase in human disease. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 63-75.	7.4	72
30	Mutation analysis of three genes encoding novel LKB1-interacting proteins, BRG1, STRADα, and MO25α, in Peutz–Jeghers syndrome. British Journal of Cancer, 2005, 92, 1126-1129.	6.4	29
31	Suppression of Peutz—Jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology, 2004, 127, 1030-1037.	1.3	88