Ning Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848013/publications.pdf Version: 2024-02-01

NINC 7HANC

#	Article	IF	CITATIONS
1	Refining Defect States in W ₁₈ O ₄₉ by Mo Doping: A Strategy for Tuning N ₂ Activation towards Solar-Driven Nitrogen Fixation. Journal of the American Chemical Society, 2018, 140, 9434-9443.	6.6	722
2	Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nature Communications, 2020, 11, 4173.	5.8	358
3	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electric‑Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	6.6	147
4	Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904020.	7.8	140
5	Metal–Organic Framework Hexagonal Nanoplates: Bottom-up Synthesis, Topotactic Transformation, and Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 7317-7321.	6.6	140
6	Controllable Fabrication of Amorphous Co—Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 23114-23121.	4.0	120
7	Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications, 2011, 47, 2041.	2.2	119
8	Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. ACS Applied Materials & Interfaces, 2016, 8, 10367-10374.	4.0	106
9	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2021, 60, 25241-25245.	7.2	104
10	Mesoporous zinc germanium oxynitride for CO2photoreduction under visible light. Chemical Communications, 2012, 48, 1269-1271.	2.2	98
11	Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. , 2019, 1, 219-245.		94
12	Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications. Advanced Energy Materials, 2020, 10, 1902535.	10.2	90
13	Enhancing CO ₂ reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. Journal of Materials Chemistry A, 2020, 8, 15936-15941.	5.2	78
14	Controllable Fabrication and Tuned Electrochemical Performance of Potassium Co–Ni Phosphate Microplates as Electrodes in Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 3506-3514.	4.0	63
15	Machine Learning in Screening High Performance Electrocatalysts for CO ₂ Reduction. Small Methods, 2021, 5, e2100987.	4.6	60
16	Ni ₂ P ₂ O ₇ Nanoarrays with Decorated C ₃ N ₄ Nanosheets as Efficient Electrode for Supercapacitors. ACS Applied Energy Materials, 2018, 1, 2016-2023.	2.5	50
17	Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. , 2022, 4, 901-913.		49
18	Hexagonal Zn _{1â^'x} Cd _x S (0.2 ≤ ≤) solid solution photocatalysts for H ₂ generation from water. Catalysis Science and Technology, 2017, 7, 982-987.	2.1	47

Ning Zhang

#	Article	IF	CITATIONS
19	Polypyrrole-Modified NH ₄ NiPO ₄ ·H ₂ O Nanoplate Arrays on Ni Foam for Efficient Electrode in Electrochemical Capacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 5578-5584.	3.2	46
20	Controllable fabrication of urchin-like Co ₃ O ₄ hollow spheres for high-performance supercapacitors and lithium-ion batteries. Dalton Transactions, 2016, 45, 15155-15161.	1.6	43
21	Advanced Electrocatalytic Performance of Ni-Based Materials for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 341-349.	3.2	43
22	Hybrid Nanostructures of Bimetallic NiCo Nitride/N-Doped Reduced Graphene Oxide as Efficient Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 19612-19620.	3.2	41
23	Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. Applied Catalysis B: Environmental, 2021, 288, 119976.	10.8	41
24	A Ternary Molten Salt Approach for Direct Regeneration of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode. Small, 2022, 18, e2106719.	5.2	41
25	Post-synthesis isomorphous substitution of layered Co–Mn hydroxide nanocones with graphene oxide as high-performance supercapacitor electrodes. Nanoscale, 2019, 11, 6165-6173.	2.8	39
26	Stabilizing CuGaS ₂ by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO ₂ reduction under visible light. Nanoscale, 2020, 12, 8693-8700.	2.8	39
27	Hierarchical CoO/MnCo ₂ O _{4.5} nanorod arrays on flexible carbon cloth as high-performance anode materials for lithium-ion batteries. Dalton Transactions, 2018, 47, 3775-3784.	1.6	38
28	Fabrication of nickel-foam-supported layered zinc–cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors. Chemical Communications, 2014, 50, 11188-11191.	2.2	36
29	β yclodextrin as Lithiumâ€ion Diffusion Channel with Enhanced Kinetics for Stable Silicon Anode. Energy and Environmental Materials, 2021, 4, 72-80.	7.3	36
30	Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 11841-11849.	3.2	35
31	Morphological Evolution and Magnetic Property of Rareâ€Earthâ€Doped Hematite Nanoparticles: Promising Contrast Agents for T1â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2017, 27, 1606821.	7.8	34
32	Anticorrosive Copper Current Collector Passivated by Selfâ€Assembled Porous Membrane for Highly Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2104930.	7.8	32
33	Synthesis of hierarchical Ag2ZnGeO4 hollow spheres for enhanced photocatalytic property. Chemical Communications, 2012, 48, 9894.	2.2	31
34	Tuning Interfacial Active Sites over Porous Mo ₂ N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 41573-41583.	4.0	30
35	Self-Supported Fe-Doped CoP Nanowire Arrays Grown on Carbon Cloth with Enhanced Properties in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 406-412.	2.5	29
36	3D Network Binder via In Situ Cross‣inking on Silicon Anodes with Improved Stability for Lithiumâ€ŀon Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900414.	1.1	29

#	Article	IF	CITATIONS
37	Molecular-Scale Manipulation of Layer Sequence in Heteroassembled Nanosheet Films toward Oxygen Evolution Electrocatalysts. ACS Nano, 2022, 16, 4028-4040.	7.3	29
38	Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries. Dalton Transactions, 2018, 47, 7522-7527.	1.6	28
39	Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental, 2020, 260, 118184.	10.8	28
40	General synthetic strategy for high-yield and uniform rare-earth oxysulfate (RE2O2SO4, RE = La, Pr, Nd,) Tj ETQq	0 0 0 rgBT 1.7	/Overlock 10 27
41	Hierarchical yolk–shell layered potassium niobate for tuned pH-dependent photocatalytic H ₂ evolution. Catalysis Science and Technology, 2017, 7, 1000-1005.	2.1	27
42	Advanced Supercapacitors Based on α-Ni(OH) ₂ Nanoplates/Graphene Composite Electrodes with High Energy and Power Density. ACS Applied Energy Materials, 2018, 1, 1496-1505.	2.5	26
43	Synthesis of Co(II)-Fe(III) Hydroxide Nanocones with Mixed Octahedral/Tetrahedral Coordination toward Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 4232-4240.	3.2	26
44	Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles. Scientific Reports, 2015, 5, 8737.	1.6	25
45	Layered Co–Mn hydroxide nanoflakes grown on carbon cloth as binder-free flexible electrodes for supercapacitors. Journal of Materials Science, 2016, 51, 3784-3792.	1.7	24
46	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	5.2	24
47	Trace Amounts of Aqueous Copper(II) Chloride Complexes in Hypersaline Solutions: Spectrophotometric and Thermodynamic Studies. Journal of Solution Chemistry, 2014, 43, 326-339.	0.6	23
48	Cobalt iron phosphide nanoparticles embedded within a carbon matrix as highly efficient electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 9212-9215.	2.2	23
49	Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2020, 137, 109227.	1.9	23
50	Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres. Scientific Reports, 2016, 5, 17934.	1.6	22
51	Controllable synthesis of layered Co–Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors. Journal of Physics and Chemistry of Solids, 2016, 88, 8-13.	1.9	22
52	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie, 2021, 133, 25445-25449.	1.6	22
53	Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chemical Communications, 2021, 57, 6070-6073.	2.2	22
54	Large-Scale Preparation, Chemical Exfoliation, and Structural Modification of Layered Zinc Hydroxide Nanocones: Transformation into Zinc Oxide Nanocones for Enhanced Photocatalytic Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 5869-5879.	3.2	20

Ning Zhang

#	Article	IF	CITATIONS
55	Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion. Nanoscale, 2017, 9, 8185-8191.	2.8	15
56	Tuning nanosheet Fe ₂ O ₃ photoanodes with C ₃ N ₄ and p-type CoO _x decoration for efficient and stable water splitting. Catalysis Science and Technology, 2018, 8, 3144-3150.	2.1	15
57	A β-cyclodextrin Modified Graphitic Carbon Nitride with Au Co-Catalyst for Efficient Photocatalytic Hydrogen Peroxide Production. Nanomaterials, 2020, 10, 1969.	1.9	15
58	Double Confined MoO ₂ /Sn/NC@NC Nanotubes: Solid–Liquid Synthesis, Conformal Transformation, and Excellent Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 19836-19845.	4.0	15
59	Electroplating CuO nanoneedle arrays on Ni foam as superior 3D scaffold for dendrite-free and stable Li metal anode. Applied Surface Science, 2022, 599, 153955.	3.1	15
60	Controllable Fabrication of Rare-Earth-Doped Gd ₂ O ₂ SO ₄ @SiO ₂ Double-Shell Hollow Spheres for Efficient Upconversion Luminescence and Magnetic Resonance Imaging. ACS Sustainable Chemistry and Engineering, 2018, 6, 10463-10471.	3.2	14
61	Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Applied Surface Science, 2019, 487, 82-90.	3.1	14
62	Montmorillonite: A structural evolution from bulk through unilaminar nanolayers to nanotubes. Applied Clay Science, 2020, 194, 105695.	2.6	14
63	Anchoring Active Sites by Pt ₂ FeNi Alloy Nanoparticles on NiFe Layered Double Hydroxides for Efficient Electrocatalytic Oxygen Evolution Reaction. Energy and Environmental Materials, 2022, 5, 270-277.	7.3	14
64	Binder-Free Co ₄ N Nanoarray on Carbon Cloth as Flexible High-Performance Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4432-4439.	2.5	13
65	Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System. PLoS ONE, 2015, 10, e0119805.	1.1	13
66	Acetate-induced controlled-synthesis of hematite polyhedra enclosed by high-activity facets for enhanced photocatalytic performance. RSC Advances, 2016, 6, 66879-66883.	1.7	12
67	Ultrathin Nanosheet-Assembled Co–Fe Hydroxide Nanotubes: Sacrificial Template Synthesis, Topotactic Transformation, and Their Application as Electrocatalysts for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 46578-46587.	4.0	12
68	Photo-irradiation tunes highly active sites over β-Ni(OH) ₂ nanosheets for the electrocatalytic oxygen evolution reaction. Chemical Communications, 2021, 57, 9060-9063.	2.2	12
69	Co(OH)2 Nanosheets Supported on Laser Ablated Cu Foam: An Efficient Oxygen Evolution Reaction Electrocatalyst. Frontiers in Chemistry, 2019, 7, 900.	1.8	12
70	Selective fabrication of porous iron oxides hollow spheres and nanofibers by electrospinning for photocatalytic water purification. Solid State Sciences, 2018, 82, 24-28.	1.5	11
71	Activity enhancement of layered cobalt hydroxide nanocones by tuning interlayer spacing and phosphidation for electrocatalytic water oxidation in neutral solutions. Inorganic Chemistry Frontiers, 2019, 6, 1744-1752.	3.0	11
72	Effect of Solvent Activity on Solute Association: The Formation of Aqueous Nickel(II) Chloride Complexes Studied by UV–Vis and EXAFS Spectroscopy. Journal of Solution Chemistry, 2015, 44, 1320-1338.	0.6	9

NING ZHANG

			the second se
73	Superlattice-Like Co-Doped Mn Oxide and NiFe Hydroxide Nanosheets toward an Energetic Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	9
74	Rare-earth-doped yttrium oxide nanoplatelets and nanotubes: controllable fabrication, topotactic transformation and upconversion luminescence. CrystEngComm, 2018, 20, 5025-5032.	1.3	7
75	Alternate Restacking of 2 D CoNi Hydroxide and Graphene Oxide Nanosheets for Energetic Oxygen Evolution. ChemSusChem, 2019, 12, 5274-5281.	3.6	6
76	Heterostructured NiFe oxide/phosphide nanoflakes for efficient water oxidation. Dalton Transactions, 2019, 48, 8442-8448.	1.6	6
77	Multi-shelled cobalt–nickel oxide/phosphide hollow spheres for an efficient oxygen evolution reaction. Dalton Transactions, 2020, 49, 10918-10927.	1.6	6
78	Crossâ€Linked Polymer Binder via Phthalic Acid for Stabilizing SiO _x Anodes. Macromolecular Chemistry and Physics, 0, , 2200068.	1.1	6
79	Photoassisted fabrication of zinc indium oxide/oxysulfide composite for enhanced photocatalytic H ₂ evolution under visible-light irradiation. Science and Technology of Advanced Materials, 2012, 13, 055001.	2.8	5
80	Biomolecule-assisted Hydrothermal Synthesis and Electrochemical Properties of Copper Sulfide Hollow Spheres. Chemistry Letters, 2015, 44, 1321-1323.	0.7	5
81	Electronic configuration modulation of tin dioxide by phosphorus dopant for pathway change in electrocatalytic water oxidation. Inorganic Chemistry Frontiers, 2021, 9, 83-89.	3.0	5
82	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets Grow on Porous Mo ₂ N for an Efficient Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 11467-11476.	2.5	4
83	Largeâ€scale Hydrothermal Synthesis and Characterization of Sizeâ€controlled Lanthanum Hydroxide Nanorods. Chinese Journal of Chemistry, 2009, 27, 920-924.	2.6	3
84	One-Pot Synthesis of Nitrogen-Doped TiO2 with Supported Copper Nanocrystalline for Photocatalytic Environment Purification under Household White LED Lamp. Molecules, 2021, 26, 6221.	1.7	3
85	Fuel combustion synthesis and upconversion properties of Yb3+ and Er3+ dual-doped ZrO2 nanocrystals. Journal of Central South University, 2017, 24, 2209-2214.	1.2	2
86	Terbiumâ€Doped Layered Yttrium Hydroxide Nanocone: Controlled Synthesis, Structure Variations, Phase Conversion to Oxide/Oxysulfate Nanocone and Their Luminescence Properties. Particle and Particle Systems Characterization, 2018, 35, 1800075.	1.2	2
87	Electrocatalytic oxygen and hydrogen evolution reactions at Ni3B/Fe2O3 nanotube arrays under visible light radiation. Catalysis Science and Technology, 2020, 10, 8305-8313.	2.1	2
88	Quasi Solidâ€state Electrolytes of Li ₂ Sn ₂ (bdc) ₃ (H ₂ O) _x Metalâ€organic Frameworks for Lithium Metal Battery. Electroanalysis, 2022, 34, 1667-1672.	1.5	2
89	Tuning the Electronic Structure of Layered Co-based Serpentine Nanosheets for Efficient Oxygen Evolution Reaction. Journal Physics D: Applied Physics, 0, , .	1.3	2