
Mingyong Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3847761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. Journal of Materials Chemistry A, 2018, 6, 9049-9056.	10.3	146
2	Extremely high Cassie–Baxter state stability of superhydrophobic surfaces <i>via</i> precisely tunable dual-scale and triple-scale micro–nano structures. Journal of Materials Chemistry A, 2019, 7, 18050-18062.	10.3	86
3	Large-Scale Tunable 3D Self-Supporting WO ₃ Micro-Nano Architectures as Direct Photoanodes for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 17856-17864.	8.0	57
4	Anisotropic Sliding of Water Droplets on the Superhydrophobic Surfaces with Anisotropic Groove‣ike Micro/Nano Structures. Advanced Materials Interfaces, 2016, 3, 1600641.	3.7	52
5	Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser. Journal of Laser Applications, 2019, 31, .	1.7	39
6	CoS2-incorporated WS2 nanosheets for efficient hydrogen production. Electrochimica Acta, 2018, 287, 1-9.	5.2	23
7	Three-Dimensional and In Situ-Activated Spinel Oxide Nanoporous Clusters Derived from Stainless Steel for Efficient and Durable Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 13971-13981.	8.0	21
8	Laserâ€Assisted Doping and Architecture Engineering of Fe ₃ O ₄ Nanoparticles for Highly Enhanced Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3562-3570.	6.8	19
9	Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces. Journal of Materials Chemistry A, 2020, 8, 6647-6660.	10.3	19
10	Ultrafast laser hybrid fabrication of hierarchical 3D structures of nanorods on microcones for superhydrophobic surfaces with excellent Cassie state stability and mechanical durability. Journal of Laser Applications, 2020, 32, .	1.7	14
11	Pulsed laser-assisted synthesis of defect-rich NiFe-based oxides for efficient oxygen evolution reaction. Journal of Laser Applications, 2020, 32, 022032.	1.7	7
12	Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration. Advanced Optical Technologies, 2020, 9, 89-100.	1.7	4
13	Flexible control over optical reflection property of metallic surfaces via pulse laser. Journal of Laser Applications, 2019, 31, 022502.	1.7	3