
Alexandra A P Mansur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3847756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered hybrid nanozyme catalyst cascade based on polysaccharide-enzyme-magnetic iron oxide nanostructures for potential application in cancer therapy. Catalysis Today, 2022, 388-389, 187-198.	4.4	26
2	Nanohydroxyapatite reinforced chitosan and carboxymethyl-chitosan biocomposites chemically crosslinked with epichlorohydrin for potential bone tissue repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 740-755.	3.4	5
3	Bifunctional oxidase-peroxidase inorganic nanozyme catalytic cascade for wastewater remediation. Catalysis Today, 2022, 397-399, 129-144.	4.4	9
4	Quo vadis? Bioengineered polysaccharide-based hydrogel scaffolds for damaged central nervous system recovery and regeneration. Neural Regeneration Research, 2022, 17, 1478.	3.0	0
5	Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. International Journal of Biological Macromolecules, 2022, 210, 530-544.	7.5	6
6	Synthesis of CuInS2 and CuInS2@ZnX (XÂ= S, Se) nanoparticles for bioimaging of cancer cells using electrochemically generated S2- and Se2 Journal of Alloys and Compounds, 2021, 853, 156926.	5.5	19
7	Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Research, 2021, 190, 116693.	11.3	127
8	Tunable luminescence of Cu-In-S/ZnS quantum dots-polysaccharide nanohybrids by environmentally friendly synthesis for potential solar energy photoconversion applications. Applied Surface Science, 2021, 542, 148701.	6.1	18
9	3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and â€~antibiotic-free' antibacterial activity. Environmental Technology (United Kingdom), 2021, 42, 2046-2066.	2.2	21
10	Tunable magnetothermal properties of cobalt-doped magnetite–carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. Nanoscale Advances, 2021, 3, 1029-1046.	4.6	25
11	Nanotheranostics through Mitochondria-targeted Delivery with Fluorescent Peptidomimetic Nanohybrids for Apoptosis Induction of Brain Cancer Cells. Nanotheranostics, 2021, 5, 213-239.	5.2	9
12	Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. International Journal of Biological Macromolecules, 2021, 182, 1091-1111.	7.5	10
13	Bioengineered Fluorescent Nanoprobe Conjugates for Tracking Human Bone Cells: In Vitro Biocompatibility Analysis. Materials, 2021, 14, 4422.	2.9	2
14	Optically photoactive Cu–In–S@ZnS core-shell quantum dots/biopolymer sensitized TiO2 nanostructures for sunlight energy harvesting. Optical Materials, 2021, 121, 111557.	3.6	4
15	A carboxymethylcellulose-mediated aqueous colloidal process for building plasmonic–excitonic supramolecular nanoarchitectures based on gold nanoparticles/ZnS quantum emitters for cancer theranostics. Green Chemistry, 2021, 23, 8260-8279.	9.0	9
16	Aqueous electrosynthesis of silver indium selenide nanocrystals and their photothermal properties. Green Chemistry, 2020, 22, 1239-1248.	9.0	11
17	Cu-In-S/ZnS@carboxymethylcellulose supramolecular structures: Fluorescent nanoarchitectures for targeted-theranostics of cancer cells. Carbohydrate Polymers, 2020, 247, 116703.	10.2	15
18	Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. Journal of Materials Chemistry B, 2020, 8, 7166-7188.	5.8	26

#	Article	IF	CITATIONS
19	Bevacizumab-Conjugated Quantum Dots: <i>In Vitro</i> Antiangiogenic Potential and Biosafety in Rat Retina. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 467-483.	1.4	5
20	Fluorescent quantum dots-zika virus hybrid nanoconjugates for biolabeling, bioimaging, and tracking host-cell interactions. Materials Letters, 2020, 277, 128279.	2.6	6
21	Luminescent switch of polysaccharide-peptide-quantum dot nanostructures for targeted-intracellular imaging of glioblastoma cells. Journal of Molecular Liquids, 2020, 304, 112759.	4.9	17
22	Tunable emission of AgIn5S8 and ZnAgIn5S8 nanocrystals: electrosynthesis, characterization and optical application. Materials Today Chemistry, 2020, 16, 100238.	3.5	10
23	Green synthesis of ZnS quantum dot/biopolymer photoluminescent nanoprobes for bioimaging brain cancer cells. Materials Chemistry and Physics, 2020, 244, 122716.	4.0	31
24	Multi-functional eco-friendly 3D scaffolds based on N-acyl thiolated chitosan for potential adsorption of methyl orange and antibacterial activity against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 2019, 7, 103286.	6.7	34
25	Hybrid Hydrogel Composed of Carboxymethylcellulose–Silver Nanoparticles–Doxorubicin for Anticancer and Antibacterial Therapies against Melanoma Skin Cancer Cells. ACS Applied Nano Materials, 2019, 2, 7393-7408.	5.0	75
26	Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110507.	5.0	27
27	Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Materials Letters, 2019, 252, 333-337.	2.6	20
28	L-cysteine and poly-L-arginine grafted carboxymethyl cellulose/Ag-In-S quantum dot fluorescent nanohybrids for in vitro bioimaging of brain cancer cells. International Journal of Biological Macromolecules, 2019, 133, 739-753.	7.5	30
29	Injectable chitosan/gelatin/bioactive glass nanocomposite hydrogels for potential bone regeneration: In vitro and in vivo analyses. International Journal of Biological Macromolecules, 2019, 132, 811-821.	7.5	52
30	Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. International Journal of Biological Macromolecules, 2019, 132, 677-691.	7.5	46
31	Gold nanoparticle-carboxymethyl cellulose nanocolloids for detection of human immunodeficiency virus type-1 (HIV-1) using laser light scattering immunoassay. Colloids and Surfaces B: Biointerfaces, 2019, 177, 377-388.	5.0	28
32	Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomaterials Science, 2019, 7, 2102-2122.	5.4	60
33	Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 16702-16717.	2.2	22
34	Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydrate Polymers, 2018, 195, 401-412.	10.2	51
35	Amino acid-grafted and N-acylated chitosan thiomers: Construction of 3D bio-scaffolds for potential cartilage repair applications. International Journal of Biological Macromolecules, 2018, 114, 270-282.	7.5	74
36	Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcelluloseâ€silver nanoparticle hybrids for wound dressing and epidermal repair. Journal of Applied Polymer Science, 2018, 135, 45812.	2.6	36

#	Article	IF	CITATIONS
37	Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 2018, 106, 1218-1234.	7.5	292
38	Bioengineered II–VI semiconductor quantum dot–carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 393-404.	3.9	17
39	Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Environmental Technology (United Kingdom), 2018, 39, 2856-2872.	2.2	48
40	Fluorescent ZnS Quantum Dots–Phosphoethanolamine Nanoconjugates for Bioimaging Live Cells in Cancer Research. ACS Omega, 2018, 3, 15679-15691.	3.5	8
41	Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjugate Chemistry, 2018, 29, 1973-2000.	3.6	54
42	Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. Journal of Molecular Liquids, 2018, 266, 425-440.	4.9	40
43	Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Materials Chemistry and Physics, 2018, 218, 304-316.	4.0	58
44	Enhanced Visible-Light Photoelectrochemical Conversion on TiO ₂ Nanotubes with Bi ₂ S ₃ Quantum Dots Obtained by in Situ Electrochemical Method. ACS Applied Energy Materials, 2018, 1, 3636-3645.	5.1	42
45	Carboxymethylcellulose/ZnCdS fluorescent quantum dot nanoconjugates for cancer cell bioimaging. International Journal of Biological Macromolecules, 2017, 96, 675-686.	7.5	70
46	PET-modified red mud as catalysts for oxidative desulfurization reactions. Journal of Environmental Sciences, 2017, 57, 312-320.	6.1	14
47	Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. Materials Science and Engineering C, 2017, 78, 690-705.	7.3	133
48	Toward greener electrochemical synthesis of composition-tunable luminescent CdX-based (X = Te, Se,) Tj ETQq0	0 0.rgBT /	Overlock 10 T
49	In vitro and in vivo assessment of nanotoxicity of CdS quantum dot/aminopolysaccharide bionanoconjugates. Materials Science and Engineering C, 2017, 71, 412-424.	7.3	40
50	One-Pot Aqueous Synthesis of Fluorescent Ag-In-Zn-S Quantum Dot/Polymer Bioconjugates for Multiplex Optical Bioimaging of Glioblastoma Cells. Contrast Media and Molecular Imaging, 2017, 2017, 1-15.	0.8	23
51	Composition-Tunable Optical Properties of Zn x Cd(1 â^' x)S Quantum Dot–Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications. Nanoscale Research Letters, 2017, 12, 443.	5.7	13
52	Fluorescent Nanohybrids: Cancer Diagnosis and Therapy. , 2017, , 560-584.		0
53	Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: to be or not to be nanotoxic?. International Journal of Nanomedicine, 2016, Volume 11, 4669-4690.	6.7	29

Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines. Journal of Nanomaterials, 2016, 2016, 1-16.

#	Article	IF	CITATIONS
55	Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi2S3 Quantum Dots. Nanoscale Research Letters, 2016, 11, 187.	5.7	29
56	Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 2016, 93, 1465-1478.	7.5	52
57	Cytotoxicity investigation of luminescent nanohybrids based on chitosan and carboxymethyl chitosan conjugated with Bi2S3 quantum dots for biomedical applications. Toxicology Research, 2016, 5, 1017-1028.	2.1	11
58	Recycled collagen films as biomaterials for controlled drug delivery. New Journal of Chemistry, 2016, 40, 8502-8510.	2.8	18
59	Comprehensive Analysis of Secreted Protein, Acidic and Rich in Cysteine in Prostate Carcinogenesis: Development of a 3D Nanostructured Bone-Like Model. Journal of Biomedical Nanotechnology, 2016, 12, 1667-1678.	1.1	5
60	Delivery of Splice Switching Oligonucleotides by Amphiphilic Chitosan-Based Nanoparticles. Molecular Pharmaceutics, 2016, 13, 344-356.	4.6	14
61	Evaluation of Formaldehyde Release From ASTM C6 Coating of Non-Oriented Electrical Steel. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	0
62	Carboxymethyl chitosan functionalization of Bi2S3 quantum dots: Towards eco-friendly fluorescent core-shell nanoprobes. Carbohydrate Polymers, 2016, 146, 455-466.	10.2	34
63	Nanostructured niobium oxyhydroxide dispersed Poly (3-hydroxybutyrate) (PHB) films: Highly efficient photocatalysts for degradation methylene blue dye. Applied Catalysis B: Environmental, 2016, 189, 141-150.	20.2	46
64	Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Materials Science and Engineering C, 2016, 58, 1207-1216.	7.3	147
65	Bioengineered quantum dot/chitosan-tripeptide nanoconjugates for targeting the receptors of cancer cells. International Journal of Biological Macromolecules, 2016, 82, 780-789.	7.5	36
66	Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Materials Science and Engineering C, 2016, 59, 265-277.	7.3	62
67	Fusion-bonded epoxy composite coatings on chemically functionalized API steel surfaces for potential deep-water petroleum exploration. Applied Adhesion Science, 2015, 3, .	1.5	17
68	Cytocompatible Fluorescent Quantum Dot/PEG-Chitosan Bioconjugates for Nanomedicine Applications. European Journal of Inorganic Chemistry, 2015, 2015, 4555-4564.	2.0	5
69	Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility. Materials, 2015, 8, 4191-4209.	2.9	37
70	Beyond biocompatibility: an approach for the synthesis of ZnS quantum dot-chitosan nano-immunoconjugates for cancer diagnosis. Green Chemistry, 2015, 17, 1820-1830.	9.0	54
71	Water-soluble nanoconjugates of quantum dot-chitosan-antibody for in vitro detection of cancer cells based on "enzyme-free―fluoroimmunoassay. Materials Science and Engineering C, 2015, 52, 61-71.	7.3	48
72	Quantum dot/glycol chitosan fluorescent nanoconjugates. Nanoscale Research Letters, 2015, 10, 172.	5.7	25

#	Article	IF	CITATIONS
73	O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions. Reactive and Functional Polymers, 2015, 97, 37-47.	4.1	126
74	Functionalized chitosan derivatives as nonviral vectors: physicochemical properties of acylated N,N,N-trimethyl chitosan/oligonucleotide nanopolyplexes. Soft Matter, 2015, 11, 8113-8125.	2.7	30
75	One-pot synthesis of CdS@Nb2O5 core–shell nanostructures with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2014, 152-153, 403-412.	20.2	37
76	Nanocomposites of Poly(Vinyl Alcohol)/Functionalized-Multiwall Carbon Nanotubes Conjugated With Glucose Oxidase for Potential Application as Scaffolds in Skin Wound Healing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 185-196.	3.4	35
77	"Green―colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Applied Catalysis B: Environmental, 2014, 158-159, 269-279.	20.2	143
78	Multi-enzymatic Systems with Designed 3D Architectures for Constructing Food Bioanalytical Sensors. Food Analytical Methods, 2014, 7, 1166-1178.	2.6	7
79	Fluorescent bionanoprobes based on quantum dot-chitosan–O-phospho- <scp>l</scp> -serine conjugates for labeling human bone marrow stromal cells. RSC Advances, 2014, 4, 49016-49027.	3.6	22
80	Green and facile synthesis of water-soluble ZnS quantum dots nanohybrids using chitosan derivative ligands. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	18
81	Fluorescent Nanohybrids Based on Quantum Dot–Chitosan–Antibody as Potential Cancer Biomarkers. ACS Applied Materials & Interfaces, 2014, 6, 11403-11412.	8.0	60
82	Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Applied Surface Science, 2013, 275, 347-360.	6.1	80
83	One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates. Nanoscale Research Letters, 2013, 8, 512.	5.7	75
84	Surface modified fluorescent quantum dots with neurotransmitter ligands for potential targeting of cell signaling applications. Colloids and Surfaces B: Biointerfaces, 2013, 111, 60-70.	5.0	19
85	Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. Journal of Materials Chemistry B, 2013, 1, 1696.	5.8	117
86	Water-soluble quantum dot/carboxylic-poly (vinyl alcohol) conjugates: Insights into the roles of nanointerfaces and defects toward enhancing photoluminescence behavior. Materials Chemistry and Physics, 2013, 141, 223-233.	4.0	10
87	Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Materials Science and Engineering C, 2013, 33, 790-800.	7.3	50
88	One-Step Biofunctionalization of Quantum Dots with Chitosan and N-palmitoyl Chitosan for Potential Biomedical Applications. Molecules, 2013, 18, 6550-6572.	3.8	40
89	Fluorescentâ€Magnetic Nanostructures Based on Polymerâ€Quantum Dots Conjugates. Macromolecular Symposia, 2012, 319, 114-120.	0.7	3
90	Engineered Hybrid Scaffolds of Poly(vinyl alcohol)/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation. Journal of Nanomaterials, 2012, 2012, 1-16.	2.7	32

#	Article	IF	CITATIONS
91	Bioconjugation of quantum-dots with chitosan and N,N,N-trimethyl chitosan. Carbohydrate Polymers, 2012, 90, 189-196.	10.2	51
92	Protein-semiconductor quantum dot hybrids for biomedical applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1435-1438.	0.8	4
93	Synthesis and characterization of Cd _x Mn _{1â€x} S magnetic nanoparticles stabilized with poly(vinyl alcohol) for biomedical applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1446-1449.	0.8	0
94	3D-macroporous hybrid scaffolds for tissue engineering: Network design and mathematical modeling of the degradation kinetics. Materials Science and Engineering C, 2012, 32, 404-415.	7.3	18
95	Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions. Open Biomedical Engineering Journal, 2012, 6, 85-91.	0.5	5
96	Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Biomatter, 2011, 1, 114-119.	2.6	31
97	Enzyme-Polymers Conjugated to Quantum-Dots for Sensing Applications. Sensors, 2011, 11, 9951-9972.	3.8	36
98	CdSe quantum dots stabilized by carboxylic-functionalized PVA: Synthesis and UV–vis spectroscopy characterization. Materials Chemistry and Physics, 2011, 125, 709-717.	4.0	78
99	Porcelain tile surface modification with isocyanate coupling agent: interactions between EVA modified mortar and silane improving adherence. Surface and Interface Analysis, 2011, 43, 738-743.	1.8	11
100	Preparation and characterization of 5,10,15,20â€ŧetraphenylporphyrin Langmuir films for gas chemsensor applications. Surface and Interface Analysis, 2011, 43, 1423-1429.	1.8	6
101	Surface interactions of chemically active ceramic tiles with polymer-modified mortars. Cement and Concrete Composites, 2011, 33, 742-748.	10.7	18
102	Biomolecule-quantum dot systems for bioconjugation applications. Colloids and Surfaces B: Biointerfaces, 2011, 84, 360-368.	5.0	46
103	Synthesis and characterization of CdS quantum dots with carboxylic-functionalized poly (vinyl) Tj ETQq1 1 0.784	314 rgBT / 3.8	Oyerlock 10
104	Biocompatibility of Nanostructured Chitosan/Poly(Vinyl Alcohol) Blends Chemically Crosslinked with Genipin for Biomedical Applications. Journal of Biomedical Nanotechnology, 2010, 6, 166-175.	1.1	65
105	Preparation, characterization and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds. Materials Science and Engineering C, 2010, 30, 288-294.	7.3	14
106	FTIR Investigation of UHMWPE Oxidation Submitted to Accelerated Aging Procedure. Macromolecular Symposia, 2010, 296, 487-492.	0.7	16
107	Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide. Open Biomedical Engineering Journal, 2010, 4, 107-112.	0.5	8
108	Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide. Materials, 2009, 2, 562-576.	2.9	46

#	Article	IF	CITATIONS
109	Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 529-535.	3.6	20
110	Improvement of viral recombinant protein-based immunoassays using nanostructured hybrids as solid support. Journal of Materials Science: Materials in Medicine, 2009, 20, 513-519.	3.6	2
111	Preparation and characterization of 3D porous ceramic scaffolds based on portland cement for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2009, 20, 497-505.	3.6	7
112	Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. Journal of Materials Science: Materials in Medicine, 2009, 20, 553-561.	3.6	184
113	Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Materials Science and Engineering C, 2009, 29, 1574-1583.	7.3	126
114	Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers, 2009, 76, 472-481.	10.2	429
115	Physico-chemical characterization of EVA-modified mortar and porcelain tiles interfaces. Cement and Concrete Research, 2009, 39, 1199-1208.	11.0	66
116	Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 2008, 137, 72-83.	12.7	174
117	Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA. Journal of Materials Science, 2008, 43, 510-524.	3.7	35
118	Sol–gel derived composite from bioactive glass–polyvinyl alcohol. Journal of Materials Science, 2008, 43, 494-502.	3.7	57
119	Small-angle X-ray scattering and FTIR characterization of nanostructured poly (vinyl alcohol)/silicate hybrids for immunoassay applications. Journal of Materials Science, 2008, 43, 450-463.	3.7	85
120	FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 2008, 28, 539-548.	7.3	1,249
121	Hybrid Bioactive Glass-Polyvinyl Alcohol Prepared by Sol-Gel. Materials Science Forum, 2008, 587-588, 62-66.	0.3	1
122	Morphological Characterization of 3D Porous Scaffolds Based on Portland Cement. Key Engineering Materials, 2008, 396-398, 687-690.	0.4	2
123	Protein Immobilization in PVA Hydrogel: A Synchrotron SAXS and FTIR Study. Solid State Phenomena, 2007, 121-123, 1355-1358.	0.3	5
124	Tailoring Mechanical Behavior of PVA-Bioactive Glass Hybrid Foams. Key Engineering Materials, 2007, 361-363, 289-292.	0.4	3
125	Synthesis and Characterization of Silica-Chitosan Porous Hybrids for Tissue Engineering. Key Engineering Materials, 2007, 361-363, 967-970.	0.4	8
126	Biomaterial with chemically engineered surface for protein immobilization. Journal of Materials Science: Materials in Medicine, 2005, 16, 333-340.	3.6	80

#	Article	IF	CITATIONS
127	XRD, SEM/EDX and FTIR Characterization of Brazilian Natural Coral. Key Engineering Materials, 2005, 284-286, 43-46.	0.4	7
128	Lignin-Hydroxyapatite/Tricalcium Phosphate Biocomposites: SEM/EDX and FTIR Characterization. Key Engineering Materials, 2005, 284-286, 745-748.	0.4	12
129	Small Angle X-Ray Scattering, FTIR and SEM Characterization of Nanostructured PVA/TEOS Hybrids by Chemical Crosslinking. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	12
130	Production and characterization of ceramic pieces obtained by slip casting using powder wastes. Journal of Materials Processing Technology, 2004, 145, 14-20.	6.3	27
131	Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres. Journal of the Science of Food and Agriculture, 2004, 84, 1891-1900.	3.5	41
132	Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 2004, 45, 7193-7202.	3.8	563
133	FTIR and UV‒vis study of chemically engineered biomaterial surfaces for protein immobilization. Spectroscopy, 2002, 16, 351-360.	0.8	72
134	Title is missing!. Adsorption, 2001, 7, 105-116.	3.0	12
135	Sol–gel silica based networks with controlled chemical properties. Journal of Non-Crystalline Solids, 2000, 273, 109-115.	3.1	61
136	Surface Functionalization of Porous Glass Networks:Â Effects on Bovine Serum Albumin and Porcine Insulin Immobilization. Biomacromolecules, 2000, 1, 789-797.	5.4	46
137	Title is missing!. Journal of Materials Science, 1999, 34, 5285-5291.	3.7	27
138	Photoelectrochemical behaviour of Q-state CdSxSe(1 –x)particles in arachidic acid Langmuir–Blodgett films. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3399-3404.	1.7	25
139	Photoelectrochemical properties of â€~Q-state' CdS particles in arachidic acid Langmuir–Blodgett films. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 665-672.	1.7	68
140	Quartz crystal microbalance and UV-vis absorption study of Q-State CdS particle formation in cadmium arachidate Langmuir-Blodgett films. Langmuir, 1994, 10, 899-904.	3.5	40
141	Synchrotron SAXS, XRD and FTIR Characterization of Nanostructured PVA/TEOS Hybrid Cross-Linked with Glutaraldehyde. Solid State Phenomena, 0, 121-123, 855-858.	0.3	12
142	Synthesis and Characterization of Ceramic Modified with Niobium for Biomedical Applications. Materials Science Forum, 0, 869, 884-889.	0.3	0
143	Synthesis and Characterization of CMC for Potential Application as Adsorbent in Water Treatment. Materials Science Forum, 0, 869, 750-755.	0.3	4
144	Lignin-Hydroxyapatite/Tricalcium Phosphate Biocomposites: SEM/EDX and FTIR Characterization. Key Engineering Materials, 0, , 745-748.	0.4	1

#	Article	IF	CITATIONS
145	Fluorescent Nanohybrids: Cancer Diagnosis and Therapy. , 0, , 3420-3444.		Ο