Maurice J Chacron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3847731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural Variability, Detection Thresholds, and Information Transmission in the Vestibular System. Journal of Neuroscience, 2007, 27, 771-781.	1.7	217
2	Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli. Journal of Neuroscience, 2001, 21, 5328-5343.	1.7	191
3	Parallel Processing of Sensory Input by Bursts and Isolated Spikes. Journal of Neuroscience, 2004, 24, 4351-4362.	1.7	179
4	Non-classical receptive field mediates switch in a sensory neuron's frequency tuning. Nature, 2003, 423, 77-81.	13.7	168
5	Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature, 2003, 421, 539-543.	13.7	152
6	Plastic and Nonplastic Pyramidal Cells Perform Unique Roles in a Network Capable of Adaptive Redundancy Reduction. Neuron, 2004, 41, 767-779.	3.8	130
7	Receptive Field Organization Determines Pyramidal Cell Stimulus-Encoding Capability and Spatial Stimulus Selectivity. Journal of Neuroscience, 2002, 22, 4577-4590.	1.7	114
8	Noise Shaping by Interval Correlations Increases Information Transfer. Physical Review Letters, 2004, 92, 080601.	2.9	111
9	Suprathreshold Stochastic Firing Dynamics with Memory inP-Type Electroreceptors. Physical Review Letters, 2000, 85, 1576-1579.	2.9	110
10	Electroreceptor neuron dynamics shape information transmission. Nature Neuroscience, 2005, 8, 673-678.	7.1	110
11	Temporal Processing Across Multiple Topographic Maps in the Electrosensory System. Journal of Neurophysiology, 2008, 100, 852-867.	0.9	102
12	Statistics of the Vestibular Input Experienced during Natural Self-Motion: Implications for Neural Processing. Journal of Neuroscience, 2014, 34, 8347-8357.	1.7	98
13	Serotonin selectively enhances perception and sensory neural responses to stimuli generated by same-sex conspecifics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19609-19614.	3.3	87
14	Interspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue. Neural Computation, 2003, 15, 253-278.	1.3	86
15	Efficient computation via sparse coding in electrosensory neural networks. Current Opinion in Neurobiology, 2011, 21, 752-760.	2.0	84
16	Nonlinear Information Processing in a Model Sensory System. Journal of Neurophysiology, 2006, 95, 2933-2946.	0.9	83
17	Feedback and Feedforward Control of Frequency Tuning to Naturalistic Stimuli. Journal of Neuroscience, 2005, 25, 5521-5532.	1.7	81
18	Population Coding by Electrosensory Neurons. Journal of Neurophysiology, 2008, 99, 1825-1835.	0.9	79

2

#	Article	IF	CITATIONS
19	Integrate-and-fire neurons with threshold noise: A tractable model of how interspike interval correlations affect neuronal signal transmission. Physical Review E, 2005, 72, 021911.	0.8	77
20	Effects of Restraint and Immobilization on Electrosensory Behaviors of Weakly Electric Fish. ILAR Journal, 2009, 50, 361-372.	1.8	73
21	Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish. Journal of Neurophysiology, 2011, 106, 3102-3118.	0.9	67
22	Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. Journal of Neurophysiology, 2011, 105, 1798-1814.	0.9	66
23	The statistics of the vestibular input experienced during natural selfâ€motion differ between rodents and primates. Journal of Physiology, 2017, 595, 2751-2766.	1.3	62
24	Nonrenewal spike train statistics: causes and functional consequences on neural coding. Experimental Brain Research, 2011, 210, 353-371.	0.7	61
25	Parallel Coding of First- and Second-Order Stimulus Attributes by Midbrain Electrosensory Neurons. Journal of Neuroscience, 2012, 32, 5510-5524.	1.7	61
26	Threshold fatigue and information transfer. Journal of Computational Neuroscience, 2007, 23, 301-311.	0.6	58
27	Neural heterogeneities influence envelope and temporal coding at the sensory periphery. Neuroscience, 2011, 172, 270-284.	1.1	55
28	SK Channels Gate Information Processing In Vivo by Regulating an Intrinsic Bursting Mechanism Seen In Vitro. Journal of Neurophysiology, 2009, 102, 2273-2287.	0.9	52
29	The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion. PLoS Biology, 2012, 10, e1001365.	2.6	51
30	Perception and coding of envelopes in weakly electric fishes. Journal of Experimental Biology, 2013, 216, 2393-2402.	0.8	51
31	Delayed excitatory and inhibitory feedback shape neural information transmission. Physical Review E, 2005, 72, 051917.	0.8	49
32	To Burst or Not to Burst?. Journal of Computational Neuroscience, 2004, 17, 127-136.	0.6	44
33	Neural heterogeneities and stimulus properties affect burst coding in vivo. Neuroscience, 2010, 168, 300-313.	1.1	43
34	The Increased Sensitivity of Irregular Peripheral Canal and Otolith Vestibular Afferents Optimizes their Encoding of Natural Stimuli. Journal of Neuroscience, 2015, 35, 5522-5536.	1.7	41
35	Differences in the Time Course of Short-Term Depression Across Receptive Fields Are Correlated With Directional Selectivity in Electrosensory Neurons. Journal of Neurophysiology, 2009, 102, 3270-3279.	0.9	40
36	Inhibition of SK and M channel-mediated currents by 5-HT enables parallel processing by bursts and isolated spikes. Journal of Neurophysiology, 2011, 105, 1276-1294.	0.9	40

#	Article	IF	CITATIONS
37	Weakly electric fish give behavioral responses to envelopes naturally occurring during movement: implications for neural processing. Journal of Experimental Biology, 2014, 217, 1381-91.	0.8	40
38	Coding of envelopes by correlated but not single-neuron activity requires neural variability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4791-4796.	3.3	40
39	Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nature Communications, 2016, 7, 11353.	5.8	40
40	Coding strategies in the otolith system differ for translational head motion vs. static orientation relative to gravity. ELife, 2019, 8, .	2.8	39
41	Strong Correlations between Sensitivity and Variability Give Rise to Constant Discrimination Thresholds across the Otolith Afferent Population. Journal of Neuroscience, 2013, 33, 11302-11313.	1.7	38
42	Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish. ELife, 2016, 5, .	2.8	38
43	Neural Heterogeneities Determine Response Characteristics to Second-, but Not First-Order Stimulus Features. Journal of Neuroscience, 2015, 35, 3124-3138.	1.7	36
44	Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations. Journal of Neuroscience, 2016, 36, 9859-9872.	1.7	36
45	Self-motion evokes precise spike timing in the primate vestibular system. Nature Communications, 2016, 7, 13229.	5.8	36
46	Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing. PLoS ONE, 2017, 12, e0178664.	1.1	36
47	Muscarinic Receptors Control Frequency Tuning Through the Downregulation of an A-Type Potassium Current. Journal of Neurophysiology, 2007, 98, 1526-1537.	0.9	35
48	The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 2003, 14, 803-824.	2.2	33
49	Coding movement direction by burst firing in electrosensory neurons. Journal of Neurophysiology, 2011, 106, 1954-1968.	0.9	31
50	Descending pathways generate perception of and neural responses to weak sensory input. PLoS Biology, 2018, 16, e2005239.	2.6	31
51	The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity. PLoS Computational Biology, 2012, 8, e1002667.	1.5	30
52	Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. Journal of Experimental Biology, 2013, 216, 2442-2450.	0.8	30
53	Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. Journal of Physiology (Paris), 2008, 102, 195-208.	2.1	29
54	Subthreshold Membrane Conductances Enhance Directional Selectivity in Vertebrate Sensory Neurons. Journal of Neurophysiology, 2010, 104, 449-462.	0.9	28

#	Article	IF	CITATIONS
55	Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. ELife, 2018, 7, .	2.8	28
56	Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue. Physica D: Nonlinear Phenomena, 2004, 192, 138-160.	1.3	27
57	Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli. PLoS Computational Biology, 2015, 11, e1004430.	1.5	26
58	Activation of Parallel Fiber Feedback by Spatially Diffuse Stimuli Reduces Signal and Noise Correlations via Independent Mechanisms in a Cerebellum-Like Structure. PLoS Computational Biology, 2015, 11, e1004034.	1.5	25
59	Electrosensory processing in <i>Apteronotus albifrons</i> : implications for general and specific neural coding strategies across wave-type weakly electric fish species. Journal of Neurophysiology, 2016, 116, 2909-2921.	0.9	25
60	Simple models of bursting and non-bursting P-type electroreceptors. Neurocomputing, 2001, 38-40, 129-139.	3.5	24
61	Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles. Frontiers in Computational Neuroscience, 2016, 10, 81.	1.2	24
62	Serotonin modulates electrosensory processing and behavior via 5-HT2-like receptors. Neuroscience, 2014, 271, 108-118.	1.1	23
63	Adaptation to second order stimulus features by electrosensory neurons causes ambiguity. Scientific Reports, 2016, 6, 28716.	1.6	23
64	Feedback optimizes neural coding and perception of natural stimuli. ELife, 2018, 7, .	2.8	23
65	SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels, 2017, 11, 281-304.	1.5	21
66	Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish. PLoS Computational Biology, 2017, 13, e1005716.	1.5	21
67	Parallel sparse and dense information coding streams in the electrosensory midbrain. Neuroscience Letters, 2015, 607, 1-6.	1.0	20
68	Bursts and Isolated Spikes Code for Opposite Movement Directions in Midbrain Electrosensory Neurons. PLoS ONE, 2012, 7, e40339.	1.1	19
69	Sub―and suprathreshold adaptation currents have opposite effects on frequency tuning. Journal of Physiology, 2012, 590, 4839-4858.	1.3	19
70	The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. , 0, .		19
71	In vivo conditions influence the coding of stimulus features by bursts of action potentials. Journal of Computational Neuroscience, 2011, 31, 369-383.	0.6	16
72	Stimulus background influences phase invariant coding by correlated neural activity. ELife, 2017, 6, .	2.8	16

#	Article	IF	CITATIONS
73	The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 2003, 14, 803-24.	2.2	16
74	In vivo Conditions Induce Faithful Encoding of Stimuli by Reducing Nonlinear Synchronization in Vestibular Sensory Neurons. PLoS Computational Biology, 2011, 7, e1002120.	1.5	14
75	Population Coding and Correlated Variability in Electrosensory Pathways. Frontiers in Integrative Neuroscience, 2018, 12, 56.	1.0	14
76	Noise shaping in neural populations. Physical Review E, 2009, 79, 011914.	0.8	13
77	Motion processing across multiple topographic maps in the electrosensory system. Physiological Reports, 2014, 2, e00253.	0.7	13
78	Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts. Journal of Experimental Biology, 2018, 221, .	0.8	13
79	Neural variability determines coding strategies for natural self-motion in macaque monkeys. ELife, 2020, 9, .	2.8	13
80	Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. Science Advances, 2019, 5, eaax2211.	4.7	12
81	Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons. Journal of Neuroscience, 2021, 41, 3822-3841.	1.7	11
82	The neural basis for violations of Weber's law in self-motion perception. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
83	ISI CORRELATIONS AND INFORMATION TRANSFER. Fluctuation and Noise Letters, 2004, 04, L195-L205.	1.0	9
84	Experimental and theoretical demonstration of noise shaping by interspike interval correlations (Invited Paper). , 2005, 5841, 150.		9
85	Novel Functions of Feedback in Electrosensory Processing. Frontiers in Integrative Neuroscience, 2019, 13, 52.	1.0	9
86	Neural Synchrony Gives Rise to Amplitude- and Duration-Invariant Encoding Consistent With Perception of Natural Communication Stimuli. Frontiers in Neuroscience, 2020, 14, 79.	1.4	9
87	Serotonin modulates optimized coding of natural stimuli through increased neural and behavioural responses via enhanced burst firing. Journal of Physiology, 2020, 598, 1573-1589.	1.3	9
88	Serotonin Selectively Increases Detectability of Motion Stimuli in the Electrosensory System. ENeuro, 2018, 5, ENEURO.0013-18.2018.	0.9	9
89	Sparse coding of natural communication signals in midbrain neurons. BMC Neuroscience, 2009, 10, .	0.8	8
90	Correlations and Memory in Neurodynamical Systems. Lecture Notes in Physics, 2003, , 286-308.	0.3	8

#	Article	IF	CITATIONS
91	Electrosensory neural responses to natural electro-communication stimuli are distributed along a continuum. PLoS ONE, 2017, 12, e0175322.	1.1	8
92	Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways. Nature Communications, 2022, 13, 2612.	5.8	8
93	Coding stimulus amplitude by correlated neural activity. Physical Review E, 2015, 91, 042717.	0.8	7
94	Serotonergic Modulation of Sensory Neuron Activity and Behavior in Apteronotus albifrons. Frontiers in Integrative Neuroscience, 2020, 14, 38.	1.0	7
95	Envelope Coding and Processing: Implications for Perception and Behavior. Springer Handbook of Auditory Research, 2019, , 251-277.	0.3	7
96	Synergistic population coding of natural communication stimuli by hindbrain electrosensory neurons. Scientific Reports, 2021, 11, 10840.	1.6	6
97	Neuronal On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Scientific Reports, 2020, 10, 10194.	1.6	5
98	Noise Shaping in Neural Populations with Global Delayed Feedback. Mathematical Modelling of Natural Phenomena, 2010, 5, 100-124.	0.9	4
99	Negative optokinetic afternystagmus in larval zebrafish demonstrates set-point adaptation. Scientific Reports, 2019, 9, 19039.	1.6	4
100	Physiology of Tuberous Electrosensory Systems â~†. , 2017, , .		4
101	From Molecules to Behavior: Organismal-Level Regulation of Ion Channel Trafficking. PLoS Biology, 2009, 7, e1000211.	2.6	3
102	Coding signal strength by correlated activity in bursting neurons. BMC Neuroscience, 2010, 11, .	0.8	3
103	Active Sensing: Constancy Requires Change. Current Biology, 2018, 28, R1391-R1394.	1.8	3
104	Serotonin and sensory processing. Handbook of Behavioral Neuroscience, 2020, , 449-459.	0.7	3
105	Lower Baseline Variability Gives Rise to Lower Detection Thresholds in Midbrain than Hindbrain Electrosensory Neurons. Neuroscience, 2020, 448, 43-54.	1.1	2
106	Differential neural responses to naturally occurring envelopes in the electrosensory system. BMC Neuroscience, 2014, 15, .	0.8	1
107	One cell, two bursting mechanisms. In vivo conditions change the in vitroburst in pyramidal cells of the ElectroLateral Lobe (ELL) of electric fish. BMC Neuroscience, 2008, 9, .	0.8	0
108	Burst firing regulates correlated activity in neurons. BMC Neuroscience, 2009, 10, .	0.8	0

#	Article	IF	CITATIONS
109	Neural Heterogeneities and the coding of contrast envelopes. BMC Neuroscience, 2010, 11, .	0.8	Ο
110	Coding motion direction by action potential patterns. BMC Neuroscience, 2011, 12, .	0.8	0
111	Burst dynamics enable contrast coding via synchrony. BMC Neuroscience, 2011, 12, .	0.8	Ο
112	Parallel coding of first and second order stimulus attributes. BMC Neuroscience, 2012, 13, O13.	0.8	0
113	Neural correlations code for stimulus variance. BMC Neuroscience, 2013, 14, P61.	0.8	Ο
114	Neural correlations in the electrosensory lateral line lobe of the weakly electric fish, Apteronotus leptorhynchus: analysis of multi-channel recordings. BMC Neuroscience, 2014, 15, .	0.8	0
115	Changes in stimulus envelope reveal two classes of peripheral electrosensory neurons. BMC Neuroscience, 2014, 15, .	0.8	0
116	Editorial: Recent Advances in Electroreception and Electrogeneration. Frontiers in Integrative Neuroscience, 2021, 15, 668677.	1.0	0