List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3847675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nature Cell Biology, 2010, 12, 132-142.	4.6	292
2	Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3. Protein Science, 2009, 11, 262-270.	3.1	245
3	Structural bases of collagen stabilization induced by proline hydroxylation. Biopolymers, 2001, 58, 459-464.	1.2	202
4	X-ray crystallographic determination of a collagen-like peptide with the repeating sequence (Pro-Pro-Gly). Journal of Molecular Biology, 1998, 280, 623-638.	2.0	166
5	Preferred proline puckerings in <i>cis</i> and <i>trans</i> peptide groups: Implications for collagen stability. Protein Science, 2001, 10, 2627-2632.	3.1	120
6	Molecular dynamics analyses of cross-beta-spine steric zipper models: beta-Sheet twisting and aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11533-11538.	3.3	107
7	Crystal structure of a collagen-like polypeptide with repeating sequence Pro-Hyp-Gly at 1.4 ïزاء resolution: Implications for collagen hydration. Biopolymers, 2000, 56, 8-13.	1.2	98
8	<i>Maleness-on-the-Y</i> (<i>MoY</i>) orchestrates male sex determination in major agricultural fruit fly pests. Science, 2019, 365, 1457-1460.	6.0	88
9	Crystal structure of Trematomus newnesi haemoglobin re-opens the root effect question. Journal of Molecular Biology, 1999, 287, 897-906.	2.0	71
10	The crystal structure of a tetrameric hemoglobin in a partial hemichrome state. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9801-9806.	3.3	71
11	Subtle functional collective motions in pancreatic-like ribonucleases: From ribonuclease A to angiogenin. Proteins: Structure, Function and Bioinformatics, 2003, 53, 101-110.	1.5	64
12	Productive and nonproductive binding to ribonuclease A: Xâ€ray structure of two complexes with uridylyl(2′,5′)guanosine. Protein Science, 2000, 9, 1217-1225.	3.1	62
13	Imino Acids and Collagen Triple Helix Stability:  Characterization of Collagen-like Polypeptides Containing Hyp-Hyp-Gly Sequence Repeats. Journal of the American Chemical Society, 2004, 126, 11402-11403.	6.6	62
14	Global and local motions in ribonuclease A: A molecular dynamics study. Biopolymers, 2002, 65, 274-283.	1.2	56
15	Nucleophosmin contains amyloidogenic regions that are able to form toxic aggregates under physiological conditions. FASEB Journal, 2015, 29, 3689-3701.	0.2	53
16	Recent Progress on Collagen Triple Helix Structure, Stability and Assembly. Protein and Peptide Letters, 2002, 9, 107-116.	0.4	53
17	Stabilization of the triple-helical structure of natural collagen by side-chain interactions. Biochemistry, 1993, 32, 7354-7359.	1.2	51
18	Insights into Stability and Toxicity of Amyloid-Like Oligomers by Replica Exchange Molecular Dynamics Analyses. Biophysical Journal, 2008, 95, 1965-1973.	0.2	51

#	Article	IF	CITATIONS
19	Role of hydration in collagen triple helix stabilization. Biochemical and Biophysical Research Communications, 2008, 372, 121-125.	1.0	50
20	Molecular organization of the cullin E3 ligase adaptor KCTD11. Biochimie, 2011, 93, 715-724.	1.3	50
21	Minimal structural requirements for root effect: Crystal structure of the cathodic hemoglobin isolated from the antarctic fish Trematomus newnesi. Proteins: Structure, Function and Bioinformatics, 2005, 62, 316-321.	1.5	49
22	A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 293, 569-577.	2.0	48
23	The oxidation process of Antarctic fish hemoglobins. FEBS Journal, 2004, 271, 1651-1659.	0.2	48
24	Dynamic Properties of the N-Terminal Swapped Dimer of Ribonuclease A. Biophysical Journal, 2004, 86, 2383-2391.	0.2	48
25	Insights into Structure, Stability, and Toxicity of Monomeric and Aggregated Polyglutamine Models from Molecular Dynamics Simulations. Biophysical Journal, 2008, 94, 4031-4040.	0.2	47
26	Spectroscopic and Crystallographic Characterization of a Tetrameric Hemoglobin Oxidation Reveals Structural Features of the Functional Intermediate Relaxed/Tense State. Journal of the American Chemical Society, 2008, 130, 10527-10535.	6.6	46
27	Correlation between ω and Ï^ Dihedral Angles in Protein Structures. Journal of Molecular Biology, 2005, 347, 483-487.	2.0	45
28	High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect. Proteins: Structure, Function and Bioinformatics, 2006, 65, 490-498.	1.5	45
29	Structural Characterization of Ferric Hemoglobins from Three Antarctic Fish Species of the Suborder Notothenioidei. Biophysical Journal, 2007, 93, 2822-2829.	0.2	45
30	Cullin 3 Recognition Is Not a Universal Property among KCTD Proteins. PLoS ONE, 2015, 10, e0126808.	1.1	43
31	Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures. PLoS ONE, 2011, 6, e24533.	1.1	40
32	Role of side chains in collagen triple helix stabilization and partner recognition. Journal of Peptide Science, 2009, 15, 131-140.	0.8	39
33	Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422. Journal of Virology, 2016, 90, 3745-3759.	1.5	39
34	Hierarchical Analysis of Selfâ€Assembled PEGylated Hexaphenylalanine Photoluminescent Nanostructures. Chemistry - A European Journal, 2016, 22, 16586-16597.	1.7	38
35	Polyproline Helices in Protein Structures: A Statistical Survey. Protein and Peptide Letters, 2006, 13, 847-854.	0.4	37
36	Carbohydrate Recognition by RpfB from Mycobacterium tuberculosis Unveiled by Crystallographic and Molecular Dynamics Analyses. Biophysical Journal, 2013, 104, 2530-2539.	0.2	37

#	Article	IF	CITATIONS
37	Binding of a substrate analog to a domain swapping protein: Xâ€ray structure of the complex of bovine seminal ribonuclease with uridylyl(2′,5′)adenosine. Protein Science, 1998, 7, 1691-1699.	3.1	36
38	Polyproline and Triple Helix Motifs in Host-Pathogen Recognition. Current Protein and Peptide Science, 2012, 13, 855-865.	0.7	34
39	Structural Characterization of PEGylated Hexaphenylalanine Nanostructures Exhibiting Green Photoluminescence Emission. Chemistry - A European Journal, 2017, 23, 14039-14048.	1.7	34
40	Contribution of dipole–dipole interactions to the stability of the collagen triple helix. Protein Science, 2008, 17, 955-961.	3.1	33
41	Cullin3 - BTB Interface: A Novel Target for Stapled Peptides. PLoS ONE, 2015, 10, e0121149.	1.1	33
42	Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: Antiparallel versus parallel association. Biochemical and Biophysical Research Communications, 2008, 377, 1036-1041.	1.0	32
43	An Order-Disorder Transition Plays a Role in Switching Off the Root Effect in Fish Hemoglobins. Journal of Biological Chemistry, 2010, 285, 32568-32575.	1.6	31
44	Molecular recognition of Cullin3 by KCTDs: Insights from experimental and computational investigations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1289-1298.	1.1	31
45	A Loose Domain Swapping Organization Confers a Remarkable Stability to the Dimeric Structure of the Arginine Binding Protein from Thermotoga maritima. PLoS ONE, 2014, 9, e96560.	1.1	31
46	Spectroscopic and Crystallographic Characterization of bisâ€Histidyl Adducts in Tetrameric Hemoglobins. Methods in Enzymology, 2008, 436, 425-444.	0.4	30
47	Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2015, 33, 2173-2179.	2.0	30
48	Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641372.	2.0	30
49	Amyloidâ€Like Fibrillary Morphology Originated by Tyrosineâ€Containing Aromatic Hexapeptides. Chemistry - A European Journal, 2018, 24, 6804-6817.	1.7	28
50	Open Interface and Large Quaternary Structure Movements in 3D Domain Swapped Proteins: Insights from Molecular Dynamics Simulations of the C-Terminal Swapped Dimer of Ribonuclease A. Biophysical Journal, 2005, 88, 2003-2012.	0.2	26
51	Role of Hydration in Collagen Recognition by Bacterial Adhesins. Biophysical Journal, 2011, 100, 2253-2261.	0.2	26
52	A biophysical characterization of the folded domains of KCTD12: insights into interaction with the GABA _{B2} receptor. Journal of Molecular Recognition, 2013, 26, 488-495.	1.1	26
53	Dynamics and stability of amyloidâ€like steric zipper assemblies with hydrophobic dry interfaces. Biopolymers, 2009, 91, 1161-1171.	1.2	25
54	The <scp>BTB</scp> domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states. FEBS Letters, 2016, 590, 1663-1671.	1.3	25

#	Article	IF	CITATIONS
55	Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. International Journal of Molecular Sciences, 2021, 22, 10803.	1.8	24
56	The Crystal Structure ofSulfolobus solfataricusElongation Factor 1α in Complex with Magnesium and GDPâ€,‡. Biochemistry, 2004, 43, 6630-6636.	1.2	22
57	The structure of Resuscitation promoting factor B from M. tuberculosis reveals unexpected ubiquitin-like domains. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 445-451.	1.1	22
58	Experimental evidence for the correlation of bond distances in peptide groups detected in ultrahigh-resolution protein structures. Protein Engineering, Design and Selection, 2000, 13, 825-828.	1.0	21
59	Combined crystallographic and spectroscopic analysis of <i>Trematomus bernacchii</i> hemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins. Biopolymers, 2009, 91, 1117-1125.	1.2	21
60	Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms. Protein Science, 2013, 22, 1016-1023.	3.1	20
61	The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1006-1016.	1.1	19
62	Characterization of collagen-like heterotrimers: Implications for triple-helix stability. Biopolymers, 2004, 73, 682-688.	1.2	18
63	Structure, dynamics, and stability of assemblies of the human prion fragment SNQNNF. Biochemical and Biophysical Research Communications, 2008, 366, 800-806.	1.0	18
64	Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends. Soft Matter, 2018, 14, 8219-8230.	1.2	18
65	Molecular basis of the scalp-ear-nipple syndrome unraveled by the characterization of disease-causing KCTD1 mutants. Scientific Reports, 2019, 9, 10519.	1.6	18
66	Characterisation of the components of the thioredoxin system in the archaeon Sulfolobus solfataricus. Extremophiles, 2008, 12, 553-562.	0.9	17
67	The essential player in adipogenesis GRP78 is a novel KCTD15 interactor. International Journal of Biological Macromolecules, 2018, 115, 469-475.	3.6	17
68	Loop size optimization induces a strong thermal stabilization of the thioredoxin fold. FEBS Journal, 2019, 286, 1752-1764.	2.2	17
69	KCTD15 is overexpressed in human childhood B-cell acute lymphoid leukemia. Scientific Reports, 2019, 9, 20108.	1.6	17
70	Photoluminescent Peptideâ€Based Nanostructures as FRET Donor for Fluorophore Dye. Chemistry - A European Journal, 2017, 23, 8741-8748.	1.7	16
71	Design, synthesis and characterization of a peptide able to bind proteins of the KCTD family: implications for KCTDâ \in "cullin 3 recognition. Journal of Peptide Science, 2011, 17, 373-376.	0.8	15
72	Factors affecting the amplitude of the Ï,, angle in proteins: a revisitation. Acta Crystallographica Section D: Structural Biology, 2017, 73, 618-625.	1.1	15

#	Article	IF	CITATIONS
73	Amyloid-like Prep1 peptides exhibit reversible blue-green-red fluorescence <i>in vitro</i> and in living cells. Chemical Communications, 2021, 57, 3720-3723.	2.2	15
74	Interplay between Peptide Bond Geometrical Parameters in Nonglobular Structural Contexts. BioMed Research International, 2013, 2013, 1-8.	0.9	14
75	A peptide antagonist of Prep1-p160 interaction improves ceramide-induced insulin resistance in skeletal muscle cells. Oncotarget, 2017, 8, 71845-71858.	0.8	14
76	Chemical Denaturation of the Elongation Factor 1α Isolated from the Hyperthermophilic ArchaeonSulfolobus solfataricusâ€. Biochemistry, 2006, 45, 719-726.	1.2	13
77	Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: A thermostable protein with two functions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 554-562.	1.1	13
78	Thermal and Chemical Stability of Two Homologous POZ/BTB Domains of KCTD Proteins Characterized by a Different Oligomeric Organization. BioMed Research International, 2013, 2013, 1-8.	0.9	13
79	Proline 235 plays a key role in the regulation of the oligomeric states of Thermotoga maritima Arginine Binding Protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 814-824.	1.1	13
80	AlphaFold-Predicted Structures of KCTD Proteins Unravel Previously Undetected Relationships among the Members of the Family. Biomolecules, 2021, 11, 1862.	1.8	13
81	Crystallization and preliminary X-ray crystallographic analysis of ligand-free and arginine-bound forms ofThermotoga maritimaarginine-binding protein. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1462-1465.	0.7	12
82	ATP regulation of the ligand-binding properties in temperate and cold-adapted haemoglobins. X-ray structure and ligand-binding kinetics in the sub-Antarctic fish Eleginops maclovinus. Molecular BioSystems, 2012, 8, 3295.	2.9	12
83	KCTD1: A novel modulator of adipogenesis through the interaction with the transcription factor AP2α. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158514.	1.2	12
84	Stability against temperature of Sulfolobus solfataricus elongation factor 1α, a multi-domain protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 573-581.	1.1	11
85	The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1973-1986.	1.5	11
86	Bond distances in polypeptide backbones depend on the local conformation. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1272-1283.	2.5	11
87	The dynamic properties of the Hepatitis C Virus E2 envelope protein unraveled by molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2017, 35, 805-816.	2.0	11
88	Limited tendency of α-helical residues to form disulfide bridges: a structural explanation. Journal of Peptide Science, 2006, 12, 740-747.	0.8	10
89	Structural and Dynamic Properties of Incomplete Immunoglobulin-like Fold Domains. Protein and Peptide Letters, 2012, 19, 1045-1053.	0.4	10
90	Domain swapping dissection in Thermotoga maritima arginine binding protein: How structural flexibility may compensate destabilization. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 952-962.	1.1	10

#	Article	IF	CITATIONS
91	Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Scientific Reports, 2021, 11, 2470.	1.6	10
92	The lncRNA TEX41 is upregulated in pediatric B-Cells Acute Lymphoblastic Leukemia and it is necessary for leukemic cell growth. Biomarker Research, 2021, 9, 54.	2.8	10
93	Elongation Factors EFIA and EFâ€īu: Their Role in Translation and Beyond. Israel Journal of Chemistry, 2010, 50, 71-79.	1.0	9
94	Crystallization, preliminary X-ray diffraction studies and Raman microscopy of the major haemoglobin from the sub-Antarctic fish <i>Eleginops maclovinus</i> in the carbomonoxy form. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1536-1540.	0.7	9
95	The Interacting Domains of PREP1 and p160 are Endowed with a Remarkable Structural Stability. Molecular Biotechnology, 2016, 58, 328-339.	1.3	9
96	KCTD5 is endowed with large, functionally relevant, interdomain motions. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1725-1735.	2.0	9
97	Fine Sampling of the R→T Quaternaryâ€ S tructure Transition of a Tetrameric Hemoglobin. Chemistry - A European Journal, 2017, 23, 605-613.	1.7	9
98	The Structural Versatility of the BTB Domains of KCTD Proteins and Their Recognition of the GABAB Receptor. Biomolecules, 2019, 9, 323.	1.8	9
99	The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability. Scientific Reports, 2019, 9, 6617.	1.6	9
100	Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2199-2209.	2.0	9
101	Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends. Scientific Reports, 2022, 12, 759.	1.6	9
102	Dissection of Factors Affecting the Variability of the Peptide Bond Geometry and Planarity. BioMed Research International, 2017, 2017, 1-9.	0.9	8
103	Intrinsic structural versatility of the highly conserved 412–423 epitope of the Hepatitis C Virus E2 protein. International Journal of Biological Macromolecules, 2018, 116, 620-632.	3.6	8
104	Monoclonal Antibodies: A Prospective and Retrospective View. Current Medicinal Chemistry, 2021, 28, 435-471.	1.2	8
105	Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. International Journal of Biological Macromolecules, 2021, 181, 858-867.	3.6	8
106	Structural Versatility of Hepatitis C Virus Proteins: Implications for the Design of Novel Anti-HCV Intervention Strategies. Current Medicinal Chemistry, 2017, 24, 4081-4101.	1.2	7
107	Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. International Journal of Biological Macromolecules, 2018, 118, 1924-1930.	3.6	7
108	Analysis of the time evolution of COVID-19 lethality during the first epidemic wave in Italy. Acta Biomedica, 2021, 92, e2021171.	0.2	7

#	Article	IF	CITATIONS
109	Crystallographic and spectroscopic characterizations of Sulfolobus solfataricus TrxA1 provide insights into the determinants of thioredoxin fold stability. Journal of Structural Biology, 2012, 177, 506-512.	1.3	6
110	Proteins involved in sleep homeostasis: Biophysical characterization of INC and its partners. Biochimie, 2016, 131, 106-114.	1.3	6
111	Guanidinium binding to proteins: The intriguing effects on the D1 and D2 domains of Thermotoga maritima Arginine Binding Protein and a comprehensive analysis of the Protein Data Bank. International Journal of Biological Macromolecules, 2020, 163, 375-385.	3.6	6
112	Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. International Journal of Biological Macromolecules, 2020, 163, 618-629.	3.6	6
113	Fluorescence Emission of Selfâ€assembling Amyloidâ€like Peptides: Solution versus Solid State. ChemPhysChem, 2021, 22, 2215-2221.	1.0	6
114	The dimeric structure of <i>Sulfolobus solfataricus</i> thioredoxin A2 and the basis of its thermostability. Proteins: Structure, Function and Bioinformatics, 2009, 77, 1004-1008.	1.5	5
115	Domain communication in Thermotoga maritima Arginine Binding Protein unraveled through protein dissection. International Journal of Biological Macromolecules, 2018, 119, 758-769.	3.6	5
116	The non-swapped monomeric structure of the arginine-binding protein from <i>Thermotoga maritima</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 707-713.	0.4	5
117	Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. International Journal of Biological Macromolecules, 2019, 133, 1125-1133.	3.6	5
118	KCTD15 deregulation is associated with alterations of the NF-κB signaling in both pathological and physiological model systems. Scientific Reports, 2021, 11, 18237.	1.6	5
119	A Protein Data Bank survey of multimodal binding of thiocyanate to proteins: Evidence for thiocyanate promiscuity. International Journal of Biological Macromolecules, 2022, 208, 29-36.	3.6	5
120	A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion. Scientific Reports, 2021, 11, 24495.	1.6	5
121	Crystallization and preliminary X-ray crystallographic analysis ofSulfolobus solfataricusthioredoxin reductase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 906-909.	0.7	4
122	KCTD15 Protein Expression in Peripheral Blood and Acute Myeloid Leukemia. Diagnostics, 2020, 10, 371.	1.3	4
123	Quaternary Structure Transitions of Human Hemoglobin: An Atomic-Level View of the Functional Intermediate States. Journal of Chemical Information and Modeling, 2021, 61, 3988-3999.	2.5	4
124	KCTD15 Is Overexpressed in her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics, 2022, 12, 591.	1.3	4
125	The unique structural features of carbonmonoxy hemoglobin from the sub-Antarctic fish Eleginops maclovinus. Scientific Reports, 2019, 9, 18987.	1.6	3
126	Development of a Protein Scaffold for Arginine Sensing Generated through the Dissection of the Arginine-Binding Protein from Thermotoga maritima. International Journal of Molecular Sciences, 2020, 21, 7503.	1.8	3

#	Article	IF	CITATIONS
127	Members of the GADD45 Protein Family Show Distinct Propensities to form Toxic Amyloid-Like Aggregates in Physiological Conditions. International Journal of Molecular Sciences, 2021, 22, 10700.	1.8	3
128	Crystallization and preliminary X-ray crystallographic analysis of two dimeric hyperthermostable thioredoxins isolated fromSulfolobus solfataricus. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 604-607.	0.7	2
129	The intrinsic stability of the human prion β-sheet region investigated by molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2013, 31, 441-452.	2.0	2
130	On the extraordinary pressure stability of the <i>Thermotoga maritima</i> arginine binding protein and its folded fragments – a high-pressure FTIR spectroscopy study. Physical Chemistry Chemical Physics, 2020, 22, 11244-11248.	1.3	2
131	Biochemical characterisation of the D60A mutant of the elongation factor $1\hat{l}\pm$ from the archaeon Sulfolobus solfataricus. Biochimie, 2009, 91, 835-842.	1.3	1
132	Dynamical Properties of Steric Zipper Polymorphs Formed by a IAPPDerived Peptide. Protein and Peptide Letters, 2012, 19, 846-851.	0.4	1
133	The temporal correlation between positive testing and death in Italy: from the first phase to the later evolution of the COVID-19 pandemic Acta Biomedica, 2022, 92, e2021395.	0.2	1