Ryszard O Ostaszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3847609/publications.pdf

Version: 2024-02-01

138 papers 2,410 citations

279487 23 h-index 288905 40 g-index

151 all docs

151 docs citations

151 times ranked

2637 citing authors

#	Article	IF	CITATIONS
1	TMAO: A small molecule of great expectations. Nutrition, 2015, 31, 1317-1323.	1.1	244
2	Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nature Reviews Chemistry, 2018, 2, 306-327.	13.8	92
3	Multicomponent Reactions Accelerated by Aqueous Micelles. Frontiers in Chemistry, 2018, 6, 502.	1.8	80
4	Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide - Biology and Chemistry, 2016, 60, 50-58.	1.2	73
5	Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules, 2020, 10, 323.	1.8	72
6	Model Studies on the First Enzyme-Catalyzed Ugi Reaction. Organic Letters, 2013, 15, 566-569.	2.4	64
7	A tandem Petasis–Ugi multi component condensation reaction: solution phase synthesis of six dimensional libraries. Tetrahedron Letters, 2003, 44, 603-605.	0.7	62
8	Kinetically stable complexes of alkali cations with calixspherands: an evaluation of shielding. Journal of the American Chemical Society, 1994, 116, 123-133.	6.6	57
9	Calix (azaâ€)crowns as potential ionophores for divalent and trivalent cations. Recueil Des Travaux Chimiques Des Pays-Bas, 1991, 110, 294-298.	0.0	48
10	Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget, 2016, 7, 1717-1731.	0.8	48
11	Solid-phase synthesis of five-dimensional libraries via a tandem Petasis–Ugi multi-component condensation reaction. Tetrahedron Letters, 2003, 44, 5121-5124.	0.7	47
12	Studies toward Novel Peptidomimetic Inhibitors of Thioredoxin–Thioredoxin Reductase System. Journal of Medicinal Chemistry, 2012, 55, 55-67.	2.9	44
13	All That Clitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 854.	1.8	42
14	Enzymatic desymmetrization of 3-arylglutaric acid anhydrides. Tetrahedron: Asymmetry, 2005, 16, 2475-2485.	1.8	39
15	Studies of the Synthesis of All Stereoisomers of MG-132 Proteasome Inhibitors in the Tumor Targeting Approach. Journal of Medicinal Chemistry, 2010, 53, 1509-1518.	2.9	38
16	Adenanthin targets proteins involved in the regulation of disulphide bonds. Biochemical Pharmacology, 2014, 89, 210-216.	2.0	36
17	Multicomponent diversity and enzymatic enantioselectivity as a route towards both enantiomers of α-amino acids—a model study. Tetrahedron: Asymmetry, 2006, 17, 2667-2671.	1.8	35
18	Efficient Passerini reactions in an aqueous vesicle system. RSC Advances, 2015, 5, 102828-102835.	1.7	34

#	Article	lF	CITATIONS
19	Studies on the application of the Passerini reaction and enzymatic procedures to the synthesis of tripeptide mimetics. Tetrahedron, 2007, 63, 7647-7653.	1.0	31
20	Computer-designed repurposing of chemical wastes into drugs. Nature, 2022, 604, 668-676.	13.7	30
21	Solventâ€Free Passerini Reactions. Synthetic Communications, 2008, 38, 1120-1127.	1.1	28
22	Efficient Ugi reactions in an aqueous vesicle system. RSC Advances, 2017, 7, 33344-33354.	1.7	27
23	SK053 triggers tumor cells apoptosis by oxidative stress-mediated endoplasmic reticulum stress. Biochemical Pharmacology, 2015, 93, 418-427.	2.0	26
24	Studies on enzymatic synthesis of chiral non-racemic 3-arylglutaric acid monoesters. Tetrahedron: Asymmetry, 2006, 17, 961-966.	1.8	23
25	α-Amino acids as acid components in the Passerini reaction: influence of N-protection on the yield and stereoselectivity. Tetrahedron, 2008, 64, 9780-9783.	1.0	23
26	Î-Lactonesâ€"A New Class of Compounds That Are Toxic to E. coli K12 and R2â€"R4 Strains. Materials, 2021, 14, 2956.	1.3	22
27	Synthesis of N,N′-dimethyl diazacoronands via double-quaternization reaction. Tetrahedron, 1993, 49, 1471-1477.	1.0	21
28	A new and general method for the synthesis of tripeptide aldehydes based on the multi-component Ugi reaction. Tetrahedron, 2009, 65, 4025-4034.	1.0	21
29	Enzymatic Ugi Reaction with Amines and Cyclic Imines. Chemistry - A European Journal, 2016, 22, 16684-16689.	1.7	21
30	Environmentally friendly approach to \hat{l} ±-acyloxy carboxamides via a chemoenzymatic cascade. RSC Advances, 2016, 6, 68231-68237.	1.7	21
31	Combination of enzymatic procedures with multicomponent condensations. Pure and Applied Chemistry, 2003, 75, 413-419.	0.9	20
32	Toward stereocontrolled, chemoenzymatic synthesis of unnatural peptides. Tetrahedron, 2008, 64, 3197-3203.	1.0	20
33	Evaluation of thioamides, thiolactams and thioureas as hydrogen sulfide (H2S) donors for lowering blood pressure. Bioorganic Chemistry, 2019, 88, 102941.	2.0	20
34	The application of ultrasound to N-methylation of diazacoronands. Tetrahedron Letters, 1988, 29, 959-960.	0.7	19
35	Dynamic Kinetic Resolution of 3-Aryl-4-pentenoic Acids. ACS Catalysis, 2016, 6, 3287-3292.	5 . 5	19
36	Salivary Hydrogen Sulfide Measured with a New Highly Sensitive Self-Immolative Coumarin-Based Fluorescent Probe. Molecules, 2018, 23, 2241.	1.7	19

#	Article	IF	Citations
37	α-Amidoamids as New Replacements of Antibioticsâ€"Research on the Chosen K12, R2â€"R4 E. coli Strains. Materials, 2020, 13, 5169.	1.3	19
38	High Pressure Approach to the Synthesis of Diazacoronands and Cryptands. Journal of Coordination Chemistry, 1992, 27, 201-214.	0.8	18
39	Cu(II) recognition materials: Fluorophores grafted on mesoporous silica supports. Applied Surface Science, 2007, 254, 441-451.	3.1	18
40	The studies on chemoenzymatic synthesis of Femoxetine. Journal of Molecular Catalysis B: Enzymatic, 2012, 82, 96-101.	1.8	18
41	Mixed Carbonates as Useful Substrates for a Fluorogenic Assay for Lipases and Esterases. ChemBioChem, 2015, 16, 677-682.	1.3	18
42	Enzymatic Tandem Approach to Knoevenagel Condensation of Acetaldehyde with Acidic Methylene Compounds in Organic Media. European Journal of Organic Chemistry, 2017, 2017, 4572-4579.	1.2	18
43	Biocatalytic Promiscuity of Lipases in Carbonâ€Phosphorus Bond Formation. ChemCatChem, 2019, 11, 2554-2558.	1.8	18
44	Coumarin Derivatives as New Toxic Compounds to Selected K12, R1–R4 E. coli Strains. Materials, 2020, 13, 2499.	1.3	18
45	High-pressure approach to the synthesis of N,N′-dimethyl diazacornands. Journal of the Chemical Society Chemical Communications, 1989, , 184-185.	2.0	17
46	The synthesis of a new type of anthracene DNA intercalator. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2995-2996.	1.0	17
47	The synthesis and complexation studies of thia-anthracene receptors. Tetrahedron, 1999, 55, 11553-11562.	1.0	17
48	One-pot enzymatic desymmetrization and Ugi MCR. Tetrahedron, 2005, 61, 6064-6072.	1.0	17
49	The mechanistic promiscuity of the enzymatic esterification of chiral carboxylic acids. Catalysis Communications, 2018, 106, 82-86.	1.6	17
50	Wheat germ lipase: isolation, purification and applications. Critical Reviews in Biotechnology, 2022, 42, 184-200.	5.1	17
51	Enzymeâ€Promoted Asymmetric Tandem Passerini Reaction. ChemCatChem, 2017, 9, 3047-3053.	1.8	16
52	1,2-Diarylethanols—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials, 2021, 14, 1025.	1.3	16
53	Application of Isocyanides Derived from \hat{l}_{\pm} -Amino Acids as Substrates for the Ugi Reaction. Synthetic Communications, 2008, 38, 2714-2721.	1.1	15
54	Synthesis of novel, peptidic kinase inhibitors with cytostatic/cytotoxic activity. Bioorganic and Medicinal Chemistry, 2014, 22, 1773-1781.	1.4	15

#	Article	IF	CITATIONS
55	The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials, 2021, 14, 5725.	1.3	15
56	The study on efficient hydrolases immobilization for the kinetic resolution of the \hat{l}_{\pm} -acetoxyamides. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 51-57.	1.8	14
57	Studies on the chemoenzymatic synthesis of 3-phenyl-GABA and 4-phenyl-pyrrolid-2-one: the influence of donor of the alkoxy group on enantioselective esterification. Tetrahedron: Asymmetry, 2013, 24, 427-433.	1.8	14
58	Studies on the Synthesis of Endocyclic Enol Lactones via a RCM of Selected Vinyl Esters. Journal of Organic Chemistry, 2018, 83, 8655-8661.	1.7	14
59	Pyridine Derivativesâ€"A New Class of Compounds That Are Toxic to E. coli K12, R2â€"R4 Strains. Materials, 2021, 14, 5401.	1.3	14
60	Synthesis of Cryptands under High Pressure. The Role of Solvent and Leaving Group in Double Quaternization Reactions. Heterocycles, 1986, 24, 1203.	0.4	14
61	High pressure approach to the synthesis of cryptands and related compounds. Journal of Inclusion Phenomena, 1987, 5, 553-561.	0.6	13
62	The synthesis of anthracene crown ethers derived from benzo-crown ethers. Tetrahedron, 1998, 54, 6897-6902.	1.0	13
63	Enzyme mediated kinetic resolution of \hat{l} -hydroxy- \hat{l} +, \hat{l} 2-unsaturated esters as a route to optically active \hat{l} -lactones. Tetrahedron: Asymmetry, 2017, 28, 809-818.	1.8	13
64	Enzyme Promiscuity as a Remedy for the Common Problems with Knoevenagel Condensation. Chemistry - A European Journal, 2019, 25, 10156-10164.	1.7	13
65	The synthesis of tricyclic cryptands. Tetrahedron, 1997, 53, 7967-7974.	1.0	12
66	Chemoenzymatic synthesis of enantiomerically enriched \hat{l}_{\pm} -hydroxyamides. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 125-128.	1.8	12
67	A new chemoenzymatic approach to the synthesis of chiral 4-aryl-1,4-dihydro-2H-isoquinolines via the enzymatic resolution of 2-acetyl-4-phenyl-1,4-dihydro-2H-isoquinolin-3-one. Tetrahedron: Asymmetry, 2012, 23, 1256-1261.	1.8	12
68	Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity. Organic and Biomolecular Chemistry, 2016, 14, 9146-9150.	1.5	12
69	Enantioselective Reduction of Ethyl 3â€Oxoâ€5â€phenylpentanoate with Wholeâ€Cell Biocatalysts. European Journal of Organic Chemistry, 2016, 2016, 1007-1011.	1.2	12
70	Synthesis of Enantiomerically Pure 5,6â€Dihydropyranâ€2â€ones via Chemoenzymatic Sequential DKRâ€RCM Reaction. European Journal of Organic Chemistry, 2019, 2019, 1653-1658.	1.2	12
71	Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. Materials, 2022, 15, 1975.	1.3	12
72	Complexation properties of anthracene-bridged bis-crown ethers. Journal of the Chemical Society Perkin Transactions II, 1999, , 1193-1198.	0.9	11

#	Article	IF	Citations
73	Evaluation of a new protocol for enzymatic dynamic kinetic resolution of 3-hydroxy-3-(aryl)propanoic acids. Organic and Biomolecular Chemistry, 2015, 13, 11014-11020.	1.5	11
74	Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnikâ°'Fields Reaction. Materials, 2022, 15, 3846.	1.3	11
75	Circular dichroism studies on absolute configuration assignment of peptidomimetics with a terminal chiral 3-arylpropionic acid unit. Tetrahedron: Asymmetry, 2006, 17, 2469-2478.	1.8	10
76	Parenteral Na ₂ S, a fast-releasing H ₂ S donor, but not GYY4137, a slow-releasing H ₂ S donor, lowers blood pressure in rats. Acta Biochimica Polonica, 2017, 64, 561-566.	0.3	10
77	The sustainable synthesis of peptidomimetics <i>via</i> chemoenzymatic tandem oxidation–Ugi reaction. RSC Advances, 2018, 8, 28405-28413.	1.7	10
78	Spectral properties of bis-9-anthryl derivatives immobilised in silica xerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 115-120.	2.3	9
79	Enzymatic Synergism in the Synthesis of βâ€Keto Esters. European Journal of Organic Chemistry, 2015, 2015, 5432-5437.	1.2	9
80	Catalyst-free synthesis of \hat{l}_{\pm} -acyloxycarboxamides in aqueous media. Environmental Chemistry Letters, 2019, 17, 1011-1016.	8.3	9
81	The Synthesis and Evaluation of Amidoximes as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials, 2021, 14, 7577.	1.3	9
82	Solution and solid-state studies on the molecular conformation of mono- and disubstituted pyridine amidoesters: the role of characteristic $\hat{C}_{-}H\hat{a}\in O$ and $\hat{C}_{-}H\hat{a}\in O$ interactions. Journal of Molecular Structure, 1999, 474, 197-206.	1.8	8
83	Chemoenzymatic synthesis and application of a new, easily chiral auxiliary for the synthesis of peptidomimetics via an Ugi reaction. Tetrahedron: Asymmetry, 2014, 25, 435-442.	1.8	8
84	Synthesis of (E)- $\hat{l}\pm$, \hat{l}^2 -unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorganic Chemistry, 2019, 93, 102816.	2.0	8
85	Evaluation of alcohols as substrates for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under environmentally friendly conditions. Catalysis Communications, 2020, 135, 105887.	1.6	8
86	The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes, 2022, 12, 238.	1.4	8
87	Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules, 2022, 27, 3633.	1.7	8
88	A Novel Synthesis of Hemispherands. Synlett, 1992, 1992, 354-356.	1.0	7
89	Study on the synthesis and molecular recognition of new receptors for selective complexation of carboxylic acids. Tetrahedron, 2010, 66, 2486-2491.	1.0	7
90	Facile Conversion of αâ€Acyloxy Amides into 3â€Hydroxyâ€lactams. European Journal of Organic Chemistry, 2018, 3280-3290.	1.2	7

#	Article	IF	CITATIONS
91	The studies on chemoselective promiscuous activity of hydrolases on acylals transformations. Bioorganic Chemistry, 2019, 93, 102825.	2.0	7
92	Studies towards the synthesis of bicyclomycin precursors: Synthesis of <i>N,N</i> â€2â€disubstituted 2,5â€diketopiperazines in solution and on solid phase. Journal of Heterocyclic Chemistry, 2008, 45, 765-772.	1.4	6
93	The unexpected kinetic effect of enzyme mixture: The case of enzymatic esterification. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 225-229.	1.8	6
94	The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorganic Chemistry, 2019, 93, 102817.	2.0	6
95	The amine as carbonyl precursor in the chemoenzymatic synthesis of Passerini adducts in aqueous medium. Catalysis Communications, 2020, 145, 106118.	1.6	6
96	Selective Esterification of Phosphonic Acids. Molecules, 2021, 26, 5637.	1.7	6
97	Studies toward stereoselective bionanocatalysis on gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 12-16.	1.8	5
98	A convenient stereoselective synthesis of 5-hydroxy-3-oxoesters and 3-hydroxy-5-oxoesters. Tetrahedron: Asymmetry, 2017, 28, 797-802.	1.8	5
99	Dual Activity of Grubbs-Type Catalyst in the Transvinylation of Carboxylic Acids and Ring-Closing Metathesis Reactions. Journal of Organic Chemistry, 2020, 85, 15305-15313.	1.7	5
100	Studies towards enzymatic kinetic resolutions of 1,3-diol peptidomimetics obtained via the Ugi reaction. Arkivoc, 2013, 2013, 134-143.	0.3	5
101	Selective Palladiumâ€Catalyzed α,βâ€Homodiarylation of Vinyl Esters in Aqueous Medium. European Journal of Organic Chemistry, 0, , .	1.2	5
102	A New Method for the Synthesis of N, N'-Dimethyl Diazacoronands: High-Pressure Alkylation of \hat{l}_{\pm} , \ddot{l}_{∞} -Secondary Diamines with \hat{l}_{\pm} , \ddot{l}_{∞} -Di-lodo Compounds. Synthetic Communications, 1989, 19, 2175-2179.	1.1	4
103	Fast atom bombardment of mass spectra of some N,N'-tetramethyl diazacoronands diiodides. Organic Mass Spectrometry, 1989, 24, 431-434.	1.3	4
104	Investigation of Complexation of Sodium Cation by Anthracene Crown Ethers. Supramolecular Chemistry, 2000, 12, 105-109.	1.5	4
105	The influence of cosolvent concentration on enzymatic kinetic resolution of <i>trans </i> -2-phenyl-cyclopropane-1-carboxylic acid derivatives. Biocatalysis and Biotransformation, 2015, 33, 98-104.	1.1	4
106	Evaluation of Pseudoenantiomeric Mixed Carbonates as Efficient Fluorogenic Probes for Enantioselectivity Screening. ChemBioChem, 2016, 17, 71-76.	1.3	4
107	Polymer membrane ion-selective electrodes as a convenient tool for lipases and esterases assays. Preparative Biochemistry and Biotechnology, 2017, 47, 673-677.	1.0	4
108	Studies on asymmetric synthesis of bicyclomycin precursors. A chemoenzymatic route to chiral 2,5-diketopiperazines and 2-oxa-bicyclo[4.2.2]decane-8,10-diones. Tetrahedron: Asymmetry, 2017, 28, 1127-1134.	1.8	4

7

#	Article	IF	CITATIONS
109	Evaluation of droplet-based microfluidic platforms as a convenient tool for lipases and esterases assays. Preparative Biochemistry and Biotechnology, 2019, 49, 727-734.	1.0	4
110	Environmental-friendly one-pot cascade synthesis of 3-cyanopiperidin-2,6-diones. Environmental Chemistry Letters, 2020, 18, 165-170.	8.3	4
111	Evaluation of thionolactones as a new type of hydrogen sulfide (H2S) donors for a blood pressure regulation. Bioorganic Chemistry, 2021, 108, 104650.	2.0	4
112	Evaluation of gem-Diacetates as Alternative Reagents for Enzymatic Regio- and Stereoselective Acylation of Alcohols. Journal of Organic Chemistry, 2021, 86, 6331-6342.	1.7	4
113	A CONVENIENT AND EFFECTIVE METHOD FOR THE SYNTHESIS OF TETRAOXAQUATERENES. Organic Preparations and Procedures International, 2000, 32, 394-397.	0.6	3
114	The Reaction of 2,5-Bis (Dimethyfurfuryl) Furan Dialdehyde with Primary \hat{l}_{\pm} , \hat{l}_{\pm} , \hat{l}_{\pm} . Diamines. Supramolecular Chemistry, 2000, 12, 97-100.	1.5	3
115	Interactions of new derivatives of anthracene with calf thymus DNA. , 2002, , .		3
116	Bioreactor for the Continuous Purification of Simvastatin by Lovastatin Esterase. Process Biochemistry, 2017, 60, 92-97.	1.8	3
117	The studies on the chemoenzymatic synthesis of 2-benzyl-3-butenoic acid. Catalysis Communications, 2018, 114, 6-9.	1.6	3
118	Model Studies on the Enzymeâ€Regulated Stereodivergent Cascade Passerini Reaction. European Journal of Organic Chemistry, 2021, 2021, 4161-4165.	1.2	3
119	The sustainable copper-catalyzed direct formation of highly functionalized p-quinols in water. Sustainable Chemistry and Pharmacy, 2022, 25, 100576.	1.6	3
120	The Synthesis and Structure of Chiral Di-N-p-toluenesulphonyl Diazacoronands Derived from L-Tartaric Acid. Heterocycles, 1990, 31, 397.	0.4	2
121	Tetracyclohexyloxaquaterene. Acta Crystallographica Section C: Crystal Structure Communications, 1999, 55, 1862-1864.	0.4	2
122	Fluorosensor action of bis-9-anthryl derivatives immobilised in silica xerogel. Applied Surface Science, 2002, 196, 383-391.	3.1	2
123	Photoinduced electron transfer and surface plasmon resonance in materials consisting of pyrene fluorophore and Au nanorods immobilized on MCM-48 surface. Journal of Non-Crystalline Solids, 2008, 354, 4426-4432.	1.5	2
124	Evaluation of Biodegradable Glucose Based Surfactants as a Promoting Medium for the Synthesis of Peptidomimetics with the Coumarin Scaffold. ChemistrySelect, 2020, 5, 9607-9614.	0.7	2
125	Efficient Assay for the Detection of Hydrogen Peroxide by Estimating Enzyme Promiscuous Activity in the Perhydrolysis Reaction. ChemBioChem, 2021, 22, 1464-1469.	1.3	2
126	A New Fluorescent Chemosensor for Cu2+Based on a Dianthracene-Derivative. Supramolecular Chemistry, 2000, 12, 131-134.	1.5	1

#	Article	IF	CITATIONS
127	A GENERAL SYNTHESIS OF MACROCYCLIC ESTERS. Organic Preparations and Procedures International, 2002, 34, 204-207.	0.6	1
128	Peroxiredoxins-1 and 2 Affect Proliferation and Survival of Lymphoma Cells. Blood, 2014, 124, 1693-1693.	0.6	1
129	Intensification of Double Kinetic Resolution of Chiral Amines and Alcohols via Chemoselective Formation of a Carbonate–Enzyme Intermediate. Molecules, 2022, 27, 4346.	1.7	1
130	Synthesis and structure of chiral diazacoronands derived from L-tartaric acid sup>1 < /sup>. Supramolecular Chemistry, 1995, 5, 109-117.	1.5	O
131	<code><title>Chemical</code> recognition phase of the fluorescence chemical sensor for copper (II) ions in aqueous solution <code></title>.,2001,,.</code>		O
132	An Efficient Synthesis of Tetraoxaquaterene Derivatives Starting from 2,2-Difurylpropane. Synthesis, 2004, 2004, 865-868.	1.2	O
133	Oxidative 1,1'-Coupling of Highly Alkylated 2-Methoxycarbonylazulenes. Heterocycles, 2015, 90, 1135.	0.4	O
134	SKO53 An Inhibitor Of Enzymes Involved In Allosteric Disulfide Bonds Formation Induces Differentiation Of Human AML Cells. Blood, 2013, 122, 4215-4215.	0.6	O
135	Anthracene Crown Ethers: Synthesis and Complexation of Selected Cations. , 1998, , 443-446.		O
136	SK053, an Inhibitor of Enzymes Involved in Allosteric Disulfide Bonds Formation, Targets Expression of Histone Genes and Induces Differentiation of Human AML Cell. Blood, 2014, 124, 3503-3503.	0.6	O
137	Abstract 5347: SK053, a small molecule inhibitor of enzymes involved in allosteric disulfide bonds formation, shows potent anti-leukemic effects and induces differentiation of human AML cells., 2015,,		O
138	Screening for amidoxime reductases in plant roots and Saccharomyces cerevisiae – Development of biocatalytic method for chemoselective amidine synthesis. Bioorganic Chemistry, 2022, 124, 105815.	2.0	0