
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3847109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reparative Dentin Formation by Dentin Matrix Proteins and Small Extracellular Vesicles. Journal of Endodontics, 2021, 47, 253-262.	3.1	15
2	Recruited CD68+CD206+ macrophages orchestrate graft immune tolerance to prompt xenogeneic-dentin matrix-based tooth root regeneration. Bioactive Materials, 2021, 6, 1051-1072.	15.6	15
3	The application of a new clear removable appliance with an occlusal splint in early anterior crossbite. BMC Oral Health, 2021, 21, 36.	2.3	5
4	Identification of potential biomarkers and available drugs for oral squamous cell carcinoma. Translational Cancer Research, 2021, 10, 141-151.	1.0	0
5	The Dual Effects of Reactive Oxygen Species on the Mandibular Alveolar Bone Formation in SOD1 Knockout Mice: Promotion or Inhibition. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	4.0	6
6	Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Research and Therapy, 2021, 12, 202.	5.5	12
7	In situ generation of nano TiO2 on activated carbon fiber with enhanced photocatalytic degradation performance. Research on Chemical Intermediates, 2021, 47, 3769-3784.	2.7	5
8	Xenoextracellular matrix-rosiglitazone complex-mediated immune evasion promotes xenogenic bioengineered root regeneration by altering M1/M2 macrophage polarization. Biomaterials, 2021, 276, 121066.	11.4	21
9	Immortalized Hertwig's epithelial root sheath cell line works as model for epithelial–mesenchymal interaction during tooth root formation. Journal of Cellular Physiology, 2020, 235, 2698-2709.	4.1	9
10	Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomaterialia, 2020, 113, 305-316.	8.3	93
11	Treated dentin matrixâ€based scaffolds carrying TGF-β1/BMP4 for functional bio-root regeneration. Applied Materials Today, 2020, 20, 100742.	4.3	17
12	IL-1α Regulates Osteogenesis and Osteoclastic Activity of Dental Follicle Cells Through JNK and p38 MAPK Pathways. Stem Cells and Development, 2020, 29, 1552-1566.	2.1	9
13	Xenogeneic native decellularized matrix carrying PPARÎ ³ activator RSG regulating macrophage polarization to promote ligament-to-bone regeneration. Materials Science and Engineering C, 2020, 116, 111224.	7.3	21
14	Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration. Dental Materials, 2019, 35, 1238-1253.	3.5	41
15	Effect of canonical NF-κB signaling pathway on the differentiation of rat dental epithelial stem cells. Stem Cell Research and Therapy, 2019, 10, 139.	5.5	8
16	Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics, 2019, 9, 2694-2711.	10.0	73
17	Parathyroid hormoneâ€related peptide (1–34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development. Journal of Cellular Physiology, 2019, 234, 11900-11911.	4.1	16
18	Development of immortalized Hertwig's epithelial root sheath cell lines for cementum and dentin regeneration. Stem Cell Research and Therapy, 2019, 10, 3.	5.5	26

#	Article	IF	CITATIONS
19	Comparative study on differentiation of cervical-loop cells and Hertwig's epithelial root sheath cells under the induction of dental follicle cells in rat. Scientific Reports, 2018, 8, 6546.	3.3	8
20	GSK3β regulates ameloblast differentiation via Wnt and TGFâ€Î² pathways. Journal of Cellular Physiology, 2018, 233, 5322-5333.	4.1	20
21	Development of genomic simple sequence repeat markers and genetic diversity analysis of Gracilariopsis lemaneiformis (Rhodophyta). Journal of Applied Phycology, 2018, 30, 707-716.	2.8	14
22	lsaacs syndrome associated with GABA _B and AChR antibodies in sarcomatoid carcinoma. Neurology, 2018, 91, 663-665.	1.1	6
23	Regulation of proliferation and cell cycle by protein regulator of cytokinesis 1 in oral squamous cell carcinoma. Cell Death and Disease, 2018, 9, 564.	6.3	32
24	Are Hertwig's epithelial root sheath cells necessary for periodontal formation by dental follicle cells?. Archives of Oral Biology, 2018, 94, 1-9.	1.8	18
25	Xenogeneic Bioâ€Root Prompts the Constructive Process Characterized by Macrophage Phenotype Polarization in Rodents and Nonhuman Primates. Advanced Healthcare Materials, 2017, 6, 1601112.	7.6	24
26	Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3428-3436.	2.7	40
27	Periodontal-Derived Mesenchymal Cell Sheets Promote Periodontal Regeneration in Inflammatory Microenvironment. Tissue Engineering - Part A, 2017, 23, 585-596.	3.1	38
28	Bone marrow mesenchymal stem cells combine with Treated dentin matrix to build biological root. Scientific Reports, 2017, 7, 44635.	3.3	14
29	Schwann cells secrete extracellular vesicles to promote and maintain the proliferation and multipotency of <scp>hDPC</scp> s. Cell Proliferation, 2017, 50, .	5.3	19
30	Cells isolated from cryopreserved dental follicle display similar characteristics to cryopreserved dental follicle cells. Cryobiology, 2017, 78, 47-55.	0.7	9
31	<i>t</i> BHQ Suppresses Osteoclastic Resorption in Xenogeneicâ€Treated Dentin Matrixâ€Based Scaffolds. Advanced Healthcare Materials, 2017, 6, 1700127.	7.6	20
32	Bcl11b regulates enamel matrix protein expression and dental epithelial cell differentiation during rat tooth development. Molecular Medicine Reports, 2017, 15, 297-304.	2.4	1
33	Increased survival of human free fat grafts with varying densities of human adipose-derived stem cells and platelet-rich plasma. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 209-219.	2.7	38
34	Cellâ€derived microâ€environment helps dental pulp stem cells promote dental pulp regeneration. Cell Proliferation, 2017, 50, .	5.3	37
35	Botulinum toxin A improves adipose tissue engraftment by promoting cell proliferation, adipogenesis and angiogenesis. International Journal of Molecular Medicine, 2017, 40, 713-720.	4.0	14
36	Periodontitis contributes to adipose tissue inflammation through the NF- <kappa>B, JNK and ERK pathways to promote insulin resistance inÂaÂrat model. Microbes and Infection, 2016, 18, 804-812.</kappa>	1.9	19

#	Article	IF	CITATIONS
37	DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose. Scientific Reports, 2016, 6, 27447.	3.3	34
38	Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells. Experimental Cell Research, 2016, 345, 6-16.	2.6	13
39	Prediabetes Enhances Periodontal Inflammation Consistent With Activation of Toll-Like Receptor–Mediated Nuclear Factor-κB Pathway in Rats. Journal of Periodontology, 2016, 87, e64-e74.	3.4	17
40	A Therapeutic Strategy for Spinal Cord Defect: Human Dental Follicle Cells Combined with Aligned PCL/PLGA Electrospun Material. BioMed Research International, 2015, 2015, 1-12.	1.9	33
41	Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials, 2015, 52, 56-70.	11.4	113
42	Comparison of human dental follicle cells and human periodontal ligament cells for dentin tissue regeneration. Regenerative Medicine, 2015, 10, 461-479.	1.7	27
43	CAD based design sensitivity analysis and shape optimization ofÂscaffolds for bio-root regeneration in swine. Biomaterials, 2015, 57, 59-72.	11.4	46
44	Improved Fat Graft Survival by Different Volume Fractions of Platelet-Rich Plasma and Adipose-Derived Stem Cells. Aesthetic Surgery Journal, 2015, 35, 319-333.	1.6	64
45	Comparison of the Odontogenic Differentiation Potential of Dental Follicle, Dental Papilla, and Cranial Neural Crest Cells. Journal of Endodontics, 2015, 41, 1091-1099.	3.1	22
46	Tumorigenicity analysis of heterogeneous dental stem cells and its self-modification for chromosome instability. Cell Cycle, 2015, 14, 3396-3407.	2.6	8
47	Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1340-1348.	1.6	18
48	The Combination Use of Platelet-Rich Fibrin and Treated Dentin Matrix for Tooth Root Regeneration by Cell Homing. Tissue Engineering - Part A, 2015, 21, 26-34.	3.1	56
49	Expression of Nfic during root formation in first mandibular molar of rat. Journal of Molecular Histology, 2014, 45, 619-626.	2.2	14
50	Secretory Factors From Rat Adipose Tissue Explants Promote Adipogenesis and Angiogenesis. Artificial Organs, 2014, 38, E33-45.	1.9	24
51	Hertwig's epithelial root sheath cells regulate osteogenic differentiation of dental follicle cells through the Wnt pathway. Bone, 2014, 63, 158-165.	2.9	35
52	TGF-β1 and FGF2 Stimulate the Epithelial-Mesenchymal Transition of HERS Cells Through a MEK-Dependent Mechanism. Journal of Cellular Physiology, 2014, 229, 1647-1659.	4.1	63
53	Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration. Biomaterials, 2014, 35, 4929-4939.	11.4	66
54	Finite element analysis of three zygomatic implant techniques for the severely atrophic edentulous maxilla. Journal of Prosthetic Dentistry, 2014, 111, 203-215.	2.8	24

#	Article	IF	CITATIONS
55	Scaffold-Free Cell Pellet Transplantations can be Applied to Periodontal Regeneration. Cell Transplantation, 2014, 23, 181-194.	2.5	11
56	Expression and roles of syndecan-4 in dental epithelial cell differentiation. International Journal of Molecular Medicine, 2014, 34, 1301-1308.	4.0	8
57	The role of odontogenic genes and proteins in tooth epithelial cells and their niche cells during rat tooth root development. Archives of Oral Biology, 2013, 58, 151-159.	1.8	5
58	Comparative Study of Human Dental Follicle Cell Sheets and Periodontal Ligament Cell Sheets for Periodontal Tissue Regeneration. Cell Transplantation, 2013, 22, 1061-1073.	2.5	55
59	Comparison of Odontogenic Differentiation of Human Dental Follicle Cells and Human Dental Papilla Cells. PLoS ONE, 2013, 8, e62332.	2.5	62
60	Heterogeneous Dental Follicle Cells and the Regeneration of Complex Periodontal Tissues. Tissue Engineering - Part A, 2012, 18, 459-470.	3.1	63
61	Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials, 2012, 33, 1291-1302.	11.4	116
62	Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix - based scaffold. Biomaterials, 2012, 33, 2449-2461.	11.4	148
63	Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials, 2011, 32, 4525-4538.	11.4	187
64	The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials, 2009, 30, 6708-6723.	11.4	140