Erik Cambria

List of Publications by Citations

Source: https://exaly.com/author-pdf/3846582/erik-cambria-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 289 14,717 115 h-index g-index citations papers 4.8 7.81 20,215 345 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
289	Recent Trends in Deep Learning Based Natural Language Processing [Review Article]. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 55-75	5.6	1230
288	Affective Computing and Sentiment Analysis. IEEE Intelligent Systems, 2016, 31, 102-107	4.2	701
287	New Avenues in Opinion Mining and Sentiment Analysis. <i>IEEE Intelligent Systems</i> , 2013 , 28, 15-21	4.2	597
286	A review of affective computing: From unimodal analysis to multimodal fusion. <i>Information Fusion</i> , 2017 , 37, 98-125	16.7	512
285	Aspect extraction for opinion mining with a deep convolutional neural network. <i>Knowledge-Based Systems</i> , 2016 , 108, 42-49	7.3	453
284	Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article]. <i>IEEE Computational Intelligence Magazine</i> , 2014 , 9, 48-57	5.6	432
283	Fusing audio, visual and textual clues for sentiment analysis from multimodal content. <i>Neurocomputing</i> , 2016 , 174, 50-59	5.4	262
282	Extreme Learning Machines [Trends & Controversies]. IEEE Intelligent Systems, 2013, 28, 30-59	4.2	249
281	Tensor Fusion Network for Multimodal Sentiment Analysis 2017,		233
280	. IEEE Intelligent Systems, 2017 , 32, 74-79	4.2	228
279	Sentic patterns: Dependency-based rules for concept-level sentiment analysis. <i>Knowledge-Based Systems</i> , 2014 , 69, 45-63	7.3	211
278	Sentiment Analysis Is a Big Suitcase. <i>IEEE Intelligent Systems</i> , 2017 , 32, 74-80	4.2	209
277	ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis. <i>Future Generation Computer Systems</i> , 2021 , 115, 279-294	7.5	189
276	Convolutional MKL Based Multimodal Emotion Recognition and Sentiment Analysis 2016,		187
275	Context-Dependent Sentiment Analysis in User-Generated Videos 2017,		184
274	Deep Convolutional Neural Network Textual Features and Multiple Kernel Learning for Utterance-level Multimodal Sentiment Analysis 2015 ,		180
273	Deep Learningbased Text Classification. ACM Computing Surveys, 2021, 54, 1-40	13.4	175

(2015-2021)

272	A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	165	
271	SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis 2020 ,		156	
270	Sentic LSTM: a Hybrid Network for Targeted Aspect-Based Sentiment Analysis. <i>Cognitive Computation</i> , 2018 , 10, 639-650	4.4	146	
269	Semi-supervised learning for big social data analysis. <i>Neurocomputing</i> , 2018 , 275, 1662-1673	5.4	140	
268	Learning Community Embedding with Community Detection and Node Embedding on Graphs 2017,		139	
267	Natural language based financial forecasting: a survey. Artificial Intelligence Review, 2018, 50, 49-73	9.7	137	
266	Sentic Computing. SpringerBriefs in Cognitive Computation, 2012,		133	
265	How Intense Are You? Predicting Intensities of Emotions and Sentiments using Stacked Ensemble [Application Notes]. <i>IEEE Computational Intelligence Magazine</i> , 2020 , 15, 64-75	5.6	129	
264	The Hourglass of Emotions. Lecture Notes in Computer Science, 2012, 144-157	0.9	128	
263	Towards an intelligent framework for multimodal affective data analysis. <i>Neural Networks</i> , 2015 , 63, 104-16	9.1	127	
262	Supervised Learning for Fake News Detection. <i>IEEE Intelligent Systems</i> , 2019 , 34, 76-81	4.2	121	
261	Multimodalsentimentanalysis using hierarchicalfusion with contextsmodeling. <i>Knowledge-Based Systems</i> , 2018 , 161, 124-133	7.3	118	
2 60	A Rule-Based Approach to Aspect Extraction from Product Reviews 2014 ,		114	
259	Distinguishing between facts and opinions for sentiment analysis: Survey and challenges. <i>Information Fusion</i> , 2018 , 44, 65-77	16.7	113	
258	Multilingual Sentiment Analysis: State of the Art and Independent Comparison of Techniques. <i>Cognitive Computation</i> , 2016 , 8, 757-771	4.4	111	
257	Feature Ensemble Plus Sample Selection: Domain Adaptation for Sentiment Classification. <i>IEEE Intelligent Systems</i> , 2013 , 28, 10-18	4.2	109	
256	Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis. <i>Neurocomputing</i> , 2017 , 261, 217-230	5.4	108	
255	Word Polarity Disambiguation Using Bayesian Model and Opinion-Level Features. <i>Cognitive Computation</i> , 2015 , 7, 369-380	4.4	107	

254	Learning Word Representations for Sentiment Analysis. Cognitive Computation, 2017, 9, 843-851	4.4	105
253	Multilingual sentiment analysis: from formal to informal and scarce resource languages. <i>Artificial Intelligence Review</i> , 2017 , 48, 499-527	9.7	101
252	EmoSenticSpace: A novel framework for affective common-sense reasoning. <i>Knowledge-Based Systems</i> , 2014 , 69, 108-123	7.3	100
251	Fuzzy commonsense reasoning for multimodal sentiment analysis. <i>Pattern Recognition Letters</i> , 2019 , 125, 264-270	4.7	99
250	DialogueRNN: An Attentive RNN for Emotion Detection in Conversations. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2019 , 33, 6818-6825	5	98
249	Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 26-36	5.6	97
248	Bayesian network based extreme learning machine for subjectivity detection. <i>Journal of the Franklin Institute</i> , 2018 , 355, 1780-1797	4	97
247	Sentiment and Sarcasm Classification With Multitask Learning. IEEE Intelligent Systems, 2019, 34, 38-43	4.2	95
246	A Review of Sentiment Analysis Research in Chinese Language. <i>Cognitive Computation</i> , 2017 , 9, 423-435	4.4	90
245	Ensemble application of convolutional and recurrent neural networks for multi-label text categorization 2017 ,		89
244	A concept-level approach to the analysis of online review helpfulness. <i>Computers in Human Behavior</i> , 2016 , 58, 75-81	7.7	88
243	MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations 2019,		87
242	Sentic Computing for social media marketing. Multimedia Tools and Applications, 2012, 59, 557-577	2.5	86
241	Learning multi-grained aspect target sequence for Chinese sentiment analysis. <i>Knowledge-Based Systems</i> , 2018 , 148, 167-176	7.3	85
240	A Generative Model for category text generation. <i>Information Sciences</i> , 2018 , 450, 301-315	7.7	84
239	. IEEE Intelligent Systems, 2018 , 33, 77-85	4.2	84
238	Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis. <i>Information Processing and Management</i> , 2016 , 52, 36-45	6.3	82
237	Technical analysis and sentiment embeddings for market trend prediction. <i>Expert Systems With Applications</i> , 2019 , 135, 60-70	7.8	80

236	Sentic Computing 2015 ,		78
235	Knowledge-Based Approaches to Concept-Level Sentiment Analysis. <i>IEEE Intelligent Systems</i> , 2013 , 28, 12-14	4.2	77
234	Sentic Web: A New Paradigm for Managing Social Media Affective Information. <i>Cognitive Computation</i> , 2011 , 3, 480-489	4.4	76
233	Recent trends in deep learning based personality detection. Artificial Intelligence Review, 2020, 53, 2313	3 92,3 39	75
232	An ELM-based model for affective analogical reasoning. <i>Neurocomputing</i> , 2015 , 149, 443-455	5.4	73
231	Conversational Memory Network for Emotion Recognition in Dyadic Dialogue Videos 2018 , 2018, 2122-	2132	73
230	The four dimensions of social network analysis: An overview of research methods, applications, and software tools. <i>Information Fusion</i> , 2020 , 63, 88-120	16.7	71
229	Multimodal Sentiment Analysis: Addressing Key Issues and Setting Up the Baselines. <i>IEEE Intelligent Systems</i> , 2018 , 33, 17-25	4.2	70
228	Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis 2016,		69
227	Sentic PROMs: Application of sentic computing to the development of a novel unified framework for measuring health-care quality. <i>Expert Systems With Applications</i> , 2012 , 39, 10533-10543	7.8	69
226	The Hourglass Model Revisited. <i>IEEE Intelligent Systems</i> , 2020 , 35, 96-102	4.2	69
225	A tale of two epidemics: Contextual Word2Vec for classifying twitter streams during outbreaks. <i>Information Processing and Management</i> , 2019 , 56, 247-257	6.3	68
224	Learning word dependencies in text by means of a deep recurrent belief network. <i>Knowledge-Based Systems</i> , 2016 , 108, 144-154	7.3	67
223	Sentic Album: Content-, Concept-, and Context-Based Online Personal Photo Management System. <i>Cognitive Computation</i> , 2012 , 4, 477-496	4.4	66
222	Statistical Learning Theory and ELM for Big Social Data Analysis. <i>IEEE Computational Intelligence Magazine</i> , 2016 , 11, 45-55	5.6	63
221	ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection 2018,		63
220	Sentic Computing for patient centered applications 2010 ,		61
219	Common Sense Knowledge for Handwritten Chinese Text Recognition. <i>Cognitive Computation</i> , 2013 , 5, 234-242	4.4	58

218	Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications 2019,		58
217	A Practical Guide to Sentiment Analysis. A Practical Guide To Sentiment Analysis, 2017,	O	57
216	Semantic Multidimensional Scaling for Open-Domain Sentiment Analysis. <i>IEEE Intelligent Systems</i> , 2014 , 29, 44-51	4.2	54
215	Cognitive-inspired domain adaptation of sentiment lexicons. <i>Information Processing and Management</i> , 2019 , 56, 554-564	6.3	53
214	Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model. <i>International Journal of Production Research</i> , 2019 , 57, 7068-7088	7.8	53
213	SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised Learning 2015 ,		53
212	A review of sentiment analysis research in Arabic language. <i>Future Generation Computer Systems</i> , 2020 , 112, 408-430	7.5	51
211	Circular-ELM for the reduced-reference assessment of perceived image quality. <i>Neurocomputing</i> , 2013 , 102, 78-89	5.4	51
210	Multi-level Multiple Attentions for Contextual Multimodal Sentiment Analysis 2017,		49
209	. IEEE Computational Intelligence Magazine, 2019 , 14, 39-50	5.6	48
209	. IEEE Computational Intelligence Magazine, 2019, 14, 39-50 Intelligent Asset Allocation via Market Sentiment Views. IEEE Computational Intelligence Magazine, 2018, 13, 25-34	5.6 5.6	48
	Intelligent Asset Allocation via Market Sentiment Views. IEEE Computational Intelligence Magazine,		
208	Intelligent Asset Allocation via Market Sentiment Views. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 25-34 Learning binary codes with neural collaborative filtering for efficient recommendation systems.	5.6	47
208	Intelligent Asset Allocation via Market Sentiment Views. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 25-34 Learning binary codes with neural collaborative filtering for efficient recommendation systems. <i>Knowledge-Based Systems</i> , 2019 , 172, 64-75 Application of multi-dimensional scaling and artificial neural networks for biologically inspired	5.6	47
208	Intelligent Asset Allocation via Market Sentiment Views. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 25-34 Learning binary codes with neural collaborative filtering for efficient recommendation systems. <i>Knowledge-Based Systems</i> , 2019 , 172, 64-75 Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining. <i>Biologically Inspired Cognitive Architectures</i> , 2013 , 4, 41-53	5.6 7·3	47 46 46
208 207 206 205	Intelligent Asset Allocation via Market Sentiment Views. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 25-34 Learning binary codes with neural collaborative filtering for efficient recommendation systems. <i>Knowledge-Based Systems</i> , 2019 , 172, 64-75 Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining. <i>Biologically Inspired Cognitive Architectures</i> , 2013 , 4, 41-53 Affective Computing and Sentiment Analysis. <i>A Practical Guide To Sentiment Analysis</i> , 2017 , 1-10 Sentic Computing: Exploitation of Common Sense for the Development of Emotion-Sensitive	5.6 7·3	47 46 46 45
208 207 206 205	Intelligent Asset Allocation via Market Sentiment Views. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 25-34 Learning binary codes with neural collaborative filtering for efficient recommendation systems. <i>Knowledge-Based Systems</i> , 2019 , 172, 64-75 Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining. <i>Biologically Inspired Cognitive Architectures</i> , 2013 , 4, 41-53 Affective Computing and Sentiment Analysis. <i>A Practical Guide To Sentiment Analysis</i> , 2017 , 1-10 Sentic Computing: Exploitation of Common Sense for the Development of Emotion-Sensitive Systems. <i>Lecture Notes in Computer Science</i> , 2010 , 148-156	5.6 7·3	47 46 46 45

(2015-2013)

200	A graph-based approach to commonsense concept extraction and semantic similarity detection 2013 ,		43	
199	Intention awareness: improving upon situation awareness in human-centric environments. <i>Human-centric Computing and Information Sciences</i> , 2013 , 3,	5.4	42	
198	New Trends of Learning in Computational Intelligence [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 16-17	5.6	42	
197	Enriching SenticNet Polarity Scores through Semi-Supervised Fuzzy Clustering 2012,		42	
196	Merging SenticNet and WordNet-Affect emotion lists for sentiment analysis 2012,		42	
195	Big Social Data Analysis 2013 , 401-414		42	
194	User reviews: Sentiment analysis using lexicon integrated two-channel CNNIISTM family models. <i>Applied Soft Computing Journal</i> , 2020 , 94, 106435	7.5	41	
193	Learning short-text semantic similarity with word embeddings and external knowledge sources. <i>Knowledge-Based Systems</i> , 2019 , 182, 104842	7.3	41	
192	Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph 2018 ,		40	
191	Sentiment Analysis and Topic Recognition in Video Transcriptions. <i>IEEE Intelligent Systems</i> , 2021 , 36, 88-95	4.2	40	
190	Anaphora and coreference resolution: A review. <i>Information Fusion</i> , 2020 , 59, 139-162	16.7	38	
189	Sentic blending: Scalable multimodal fusion for the continuous interpretation of semantics and sentics 2013 ,		38	
188	BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis. <i>Neurocomputing</i> , 2022 , 467, 73-82	5.4	38	
187	Common Sense Computing: From the Society of Mind to Digital Intuition and beyond. <i>Lecture Notes in Computer Science</i> , 2009 , 252-259	0.9	38	
186	A review of emotion sensing: categorization models and algorithms. <i>Multimedia Tools and Applications</i> , 2020 , 79, 35553-35582	2.5	37	
185	The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis. <i>Lecture Notes in Computer Science</i> , 2015 , 3-22	0.9	35	
184	Segment-level joint topic-sentiment model for online review analysis. <i>IEEE Intelligent Systems</i> , 2019 , 34, 43-50	4.2	34	
183	Acoustic template-matching for automatic emergency state detection: An ELM based algorithm. <i>Neurocomputing</i> , 2015 , 149, 426-434	5.4	34	

182	Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning. Lecture Notes in Computer Science, 2015 , 49-65	0.9	34
181	IARM: Inter-Aspect Relation Modeling with Memory Networks in Aspect-Based Sentiment Analysis 2018 ,		33
180	Public Mood D riven Asset Allocation: the Importance of Financial Sentiment in Portfolio Management. <i>Cognitive Computation</i> , 2018 , 10, 1167-1176	4.4	33
179	Inconsistencies on TripAdvisor reviews: A unified index between users and Sentiment Analysis Methods. <i>Neurocomputing</i> , 2019 , 353, 3-16	5.4	31
178	New avenues in knowledge bases for natural language processing. <i>Knowledge-Based Systems</i> , 2016 , 108, 1-4	7.3	31
177	An Introduction to Concept-Level Sentiment Analysis. Lecture Notes in Computer Science, 2013, 478-483	0.9	31
176	Computational Intelligence for Affective Computing and Sentiment Analysis [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2019 , 14, 16-17	5.6	29
175	Sentiment-aware volatility forecasting. <i>Knowledge-Based Systems</i> , 2019 , 176, 68-76	7.3	28
174	Computational Intelligence for Big Social Data Analysis [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2016 , 11, 8-9	5.6	28
173	Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines. <i>Journal of NeuroEngineering and Rehabilitation</i> , 2016 , 13, 76	5.3	28
172	Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. <i>Knowledge-Based Systems</i> , 2021 , 235, 107643	7.3	27
171	Unsupervised Commonsense Knowledge Enrichment for Domain-Specific Sentiment Analysis. <i>Cognitive Computation</i> , 2016 , 8, 467-477	4.4	26
170	Phonetic-Based Microtext Normalization for Twitter Sentiment Analysis 2017,		26
169	SenticSpace: Visualizing Opinions and Sentiments in a Multi-dimensional Vector Space. <i>Lecture Notes in Computer Science</i> , 2010 , 385-393	0.9	26
168	A survey of graph processing on graphics processing units. <i>Journal of Supercomputing</i> , 2018 , 74, 2086-2	1 <u>1.5</u>	24
167	Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis 2018,		24
166	Sentic Medoids: Organizing Affective Common Sense Knowledge in a Multi-Dimensional Vector Space. <i>Lecture Notes in Computer Science</i> , 2011 , 601-610	0.9	24
165	Multi-Level Fine-Scaled Sentiment Sensing with Ambivalence Handling. <i>International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems</i> , 2020 , 28, 683-697	0.8	24

(2020-2016)

164	A multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detection. <i>Knowledge-Based Systems</i> , 2016 , 105, 236-247	7.3	24	
163	Multitask Representation Learning for Multimodal Estimation of Depression Level. <i>IEEE Intelligent Systems</i> , 2019 , 34, 45-52	4.2	24	
162	BabelSenticNet: A Commonsense Reasoning Framework for Multilingual Sentiment Analysis 2018,		24	
161	Common Sense Knowledge Based Personality Recognition from Text. <i>Lecture Notes in Computer Science</i> , 2013 , 484-496	0.9	23	
160	Suicidal Ideation Detection: A Review of Machine Learning Methods and Applications. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 214-226	4.5	23	
159	A novel context-aware multimodal framework for persian sentiment analysis. <i>Neurocomputing</i> , 2021 , 457, 377-388	5.4	23	
158	Disentangled Variational Auto-Encoder for semi-supervised learning. <i>Information Sciences</i> , 2019 , 482, 73-85	7.7	22	
157	. IEEE Intelligent Systems, 2020 , 35, 106-114	4.2	21	
156	Ensemble application of ELM and GPU for real-time multimodal sentiment analysis. <i>Memetic Computing</i> , 2018 , 10, 3-13	3.4	21	
155	PerSent: A Freely Available Persian Sentiment Lexicon. Lecture Notes in Computer Science, 2016, 310-32	20 0.9	20	
154	A Survey on Deep Learning in Image Polarity Detection: Balancing Generalization Performances and Computational Costs. <i>Electronics (Switzerland)</i> , 2019 , 8, 783	2.6	19	
153	Bridging Cognitive Models and Recommender Systems. <i>Cognitive Computation</i> , 2020 , 12, 426-427	4.4	18	
152	Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules 2017 ,		18	
151	Sentic Computing. Cognitive Computation, 2015, 7, 183-185	4.4	17	
150	Enhancing business intelligence by means of suggestive reviews. <i>Scientific World Journal, The</i> , 2014 , 2014, 879323	2.2	17	
149	Sounds of Silence Breakers: Exploring Sexual Violence on Twitter 2018 ,		17	
148	ESWC14 Challenge on Concept-Level Sentiment Analysis. <i>Communications in Computer and Information Science</i> , 2014 , 3-20	0.3	16	
147	Predicting political sentiments of voters from Twitter in multi-party contexts. <i>Applied Soft Computing Journal</i> , 2020 , 97, 106743	7.5	16	

146	Extracting Time Expressions and Named Entities with Constituent-Based Tagging Schemes. <i>Cognitive Computation</i> , 2020 , 12, 844-862	4.4	15
145	What do people think about this monument? Understanding negative reviews via deep learning, clustering and descriptive rules. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2020 , 11, 39-52	3.7	15
144	Real-Time Video Emotion Recognition based on Reinforcement Learning and Domain Knowledge. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	15
143	Dialogue systems with audio context. <i>Neurocomputing</i> , 2020 , 388, 102-109	5.4	14
142	Semi-supervised Learning for Affective Common-Sense Reasoning. <i>Cognitive Computation</i> , 2017 , 9, 18-	424.4	14
141	Relation Extraction of Medical Concepts Using Categorization and Sentiment Analysis. <i>Cognitive Computation</i> , 2018 , 10, 670-685	4.4	13
140	Enhancing Sentiment Classification Performance Using Bi-Tagged Phrases 2013,		13
139	MuSe 2020 Challenge and Workshop 2020 ,		13
138	Combining Sentiment Lexicons and Content-Based Features for Depression Detection. <i>IEEE Intelligent Systems</i> , 2021 , 36, 99-105	4.2	12
137	Towards a Chinese Common and Common Sense Knowledge Base for Sentiment Analysis. <i>Lecture Notes in Computer Science</i> , 2012 , 437-446	0.9	12
136	Suicidal ideation and mental disorder detection with attentive relation networks. <i>Neural Computing and Applications</i> ,1	4.8	12
135	No, That Never Happened!! Investigating Rumors on Twitter. IEEE Intelligent Systems, 2018, 33, 8-15	4.2	12
134	SLT-Based ELM for Big Social Data Analysis. <i>Cognitive Computation</i> , 2017 , 9, 259-274	4.4	11
133	Tweeting in Support of LGBT? 2019 ,		11
132	A Review of Shorthand Systems: From Brachygraphy to Microtext and Beyond. <i>Cognitive Computation</i> , 2020 , 12, 778-792	4.4	11
131	Bottom-Up and Top-Down: Predicting Personality with Psycholinguistic and Language Model Features 2020 ,		11
130	Popularity prediction on vacation rental websites. <i>Neurocomputing</i> , 2020 , 412, 372-380	5.4	11
129	Phonetic-enriched text representation for Chinese sentiment analysis with reinforcement learning. <i>Information Fusion</i> , 2021 , 70, 88-99	16.7	11

128	Lyapunov filtering of objectivity for Spanish Sentiment Model 2016 ,		11	
127	AspNet: Aspect Extraction by Bootstrapping Generalization and Propagation Using an Aspect Network. <i>Cognitive Computation</i> , 2015 , 7, 241-253	4.4	10	
126	Commonsense-based topic modeling 2013 ,		10	
125	Data intensive review mining for sentiment classification across heterogeneous domains 2013,		10	
124	Isanette: A Common and Common Sense Knowledge Base for Opinion Mining 2011 ,		10	
123	Benchmarking Multimodal Sentiment Analysis. Lecture Notes in Computer Science, 2018, 166-179	0.9	10	
122	Intent Classification for Dialogue Utterances. IEEE Intelligent Systems, 2020, 35, 82-88	4.2	10	
121	Commonsense Knowledge Enhanced Memory Network for Stance Classification. <i>IEEE Intelligent Systems</i> , 2020 , 35, 102-109	4.2	10	
12 0	Ten Years of Sentic Computing. Cognitive Computation,1	4.4	10	
119	Type Like a Man! Inferring Gender from Keystroke Dynamics in Live-Chats. <i>IEEE Intelligent Systems</i> , 2019 , 34, 53-59	4.2	10	
118	End-to-End latent-variable task-oriented dialogue system with exact log-likelihood optimization. <i>World Wide Web</i> , 2020 , 23, 1989-2002	2.9	10	
117	Time Expression Recognition Using a Constituent-based Tagging Scheme 2018,		10	
116	Towards GPU-Based Common-Sense Reasoning: Using Fast Subgraph Matching. <i>Cognitive Computation</i> , 2016 , 8, 1074-1086	4.4	9	
115	Predicting evolving chaotic time series with fuzzy neural networks 2017,		9	
114	PhonSenticNet: A Cognitive Approach to Microtext Normalization for Concept-Level Sentiment Analysis. <i>Lecture Notes in Computer Science</i> , 2019 , 177-188	0.9	9	
113	Adaptive Modality Distillation for Separable Multimodal Sentiment Analysis. <i>IEEE Intelligent Systems</i> , 2021 , 36, 82-89	4.2	9	
112	Comment toxicity detection via a multichannel convolutional bidirectional gated recurrent unit. <i>Neurocomputing</i> , 2021 , 441, 272-278	5.4	9	
111	Bayesian Deep Convolution Belief Networks for Subjectivity Detection 2016 ,		9	

110	Growing semantic vines for robust asset allocation. <i>Knowledge-Based Systems</i> , 2019 , 165, 297-305	7.3	9
109	Computational Intelligence for Natural Language Processing [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2014 , 9, 19-63	5.6	8
108	A learning scheme based on similarity functions for affective common-sense reasoning 2015,		8
107	Sentic Avatar: Multimodal Affective Conversational Agent with Common Sense. <i>Lecture Notes in Computer Science</i> , 2011 , 81-95	0.9	8
106	New research methods & algorithms in social network analysis. <i>Future Generation Computer Systems</i> , 2021 , 114, 290-293	7.5	8
105	Multimodal Sentiment Analysis. A Practical Guide To Sentiment Analysis, 2018,	O	8
104	A survey on personality-aware recommendation systems. Artificial Intelligence Review,1	9.7	8
103	Sequential fusion of facial appearance and dynamics for depression recognition. <i>Pattern Recognition Letters</i> , 2021 , 150, 115-121	4.7	8
102	Emotion and sentiment in social and expressive media: Introduction to the special issue. <i>Information Processing and Management</i> , 2016 , 52, 1-4	6.3	7
101	Semantic Sentiment Analysis Challenge at ESWC2017. <i>Communications in Computer and Information Science</i> , 2017 , 109-123	0.3	7
100	A Convolutional Stacked Bidirectional LSTM with a Multiplicative Attention Mechanism for Aspect Category and Sentiment Detection. <i>Cognitive Computation</i> , 2021 , 13, 1423	4.4	7
99	Seq2Seq Deep Learning Models for Microtext Normalization 2019 ,		7
98	Learning with Similarity Functions: a Tensor-Based Framework. <i>Cognitive Computation</i> , 2019 , 11, 31-49	4.4	7
97	Taylor theorem: A new perspective for neural tensor networks. <i>Knowledge-Based Systems</i> , 2021 , 228, 107258	7.3	7
96	Concept-level sentiment analysis 2014 ,		6
95	Adaptive two-stage feature selection for sentiment classification 2017,		6
94	SenticNet 2015 , 23-71		6
93	Can a Humanoid Robot be part of the Organizational Workforce? A User Study Leveraging Sentiment Analysis 2019 ,		6

(2021-2022)

92	OntoSenticNet 2: Enhancing Reasoning Within Sentiment Analysis. <i>IEEE Intelligent Systems</i> , 2022 , 37, 103-110	4.2	6
91	Concept-Level Sentiment Analysis with SenticNet. A Practical Guide To Sentiment Analysis, 2017, 173-18	8 0	5
90	Discovering Bayesian Market Views for Intelligent Asset Allocation. <i>Lecture Notes in Computer Science</i> , 2019 , 120-135	0.9	5
89	Document Representation with Statistical Word Senses in Cross-Lingual Document Clustering. <i>International Journal of Pattern Recognition and Artificial Intelligence</i> , 2015 , 29, 1559003	1.1	5
88	Balancing computational complexity and generalization ability: A novel design for ELM. <i>Neurocomputing</i> , 2020 , 401, 405-417	5.4	5
87	Learning From Personal Longitudinal Dialog Data. <i>IEEE Intelligent Systems</i> , 2019 , 34, 16-23	4.2	5
86	Sentiment Analysis in the Bio-Medical Domain. A Practical Guide To Sentiment Analysis, 2017,	0	5
85	Context- and Sentiment-Aware Networks for Emotion Recognition in Conversation. <i>IEEE Transactions on Artificial Intelligence</i> , 2022 , 1-1	4.7	5
84	Summary of MuSe 2020 2020 ,		5
83	CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language. <i>Lecture Notes in Computer Science</i> , 2018 , 90-104	0.9	5
82	Ensemble of Technical Analysis and Machine Learning for Market Trend Prediction 2018,		5
81	Multitask learning for emotion and personality traits detection. <i>Neurocomputing</i> , 2022 , 493, 340-350	5.4	5
80	Ensemble Application of Transfer Learning and Sample Weighting for Stock Market Prediction 2019 ,		4
79	Storages Are Not Forever. <i>Cognitive Computation</i> , 2017 , 9, 646-658	4.4	4
78	. IEEE Transactions on Affective Computing, 2017 , 8, 426-427	5.7	4
77	Auto-categorization of medical concepts and contexts 2017,		4
76	New Trends of Learning in Computational Intelligence (Part II) [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 8-8	5.6	4
75	MuSe-Toolbox: The Multimodal Sentiment Analysis Continuous Annotation Fusion and Discrete Class Transformation Toolbox 2021 ,		4

74	MuSe 2021 Challenge 2021 ,		4
73	Genetic Programming for Domain Adaptation in Product Reviews 2020,		4
72	Weakly supervised semantic segmentation with superpixel embedding 2016,		4
71	Combining Textual Clues with Audio-Visual Information for Multimodal Sentiment Analysis. <i>A Practical Guide To Sentiment Analysis</i> , 2018 , 153-178	O	4
70	Stock trading rule discovery with double deep Q-network. <i>Applied Soft Computing Journal</i> , 2021 , 107, 107320	7.5	4
69	Open Secrets and Wrong Rights 2017 ,		3
68	Employing sentiment-based affinity and gravity scores to identify relations of medical concepts 2017 ,		3
67	Muscle synergies for reliable classification of arm motions using myoelectric interface. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2015 , 2015, 1136-9	0.9	3
66	Dilated Convolutional Attention Network for Medical Code Assignment from Clinical Text 2020,		3
65	Gated Recurrent Unit with Multilingual Universal Sentence Encoder for Arabic Aspect-Based Sentiment Analysis. <i>Knowledge-Based Systems</i> , 2021 , 107540	7.3	3
64	PerSent 2.0: Persian Sentiment Lexicon Enriched with Domain-Specific Words. <i>Lecture Notes in Computer Science</i> , 2020 , 497-509	0.9	3
63	Deciphering Public Opinion of Nuclear Energy on Twitter 2020 ,		3
62	Sentiment-Oriented Information Retrieval: Affective Analysis of Documents Based on the SenticNet Framework. <i>Studies in Computational Intelligence</i> , 2016 , 175-197	0.8	3
61	Understanding the Role of Social Media in Backpacker Tourism 2019 ,		3
60	Toward Aspect-Level Sentiment Modification Without Parallel Data. <i>IEEE Intelligent Systems</i> , 2021 , 36, 75-81	4.2	3
59	Investigating Timing and Impact of News on the Stock Market 2018,		3
58	Learning Visual Concepts in Images Using Temporal Convolutional Networks 2018,		3
57	Singlish SenticNet: A Concept-Based Sentiment Resource for Singapore English 2018,		3

56	Fake News Detection Using XLNet Fine-Tuning Model 2021 ,		3
55	Let Chat about Brexit! A Politically-Sensitive Dialog System Based on Twitter Data 2017,		2
54	Semantic Models for Style-Based Text Clustering 2011 ,		2
53	COAL: Convolutional Online Adaptation Learning for Opinion Mining 2020,		2
52	Arabic question answering system: a survey. Artificial Intelligence Review,1	9.7	2
51	Predicting Future Market Trends: Which Is the Optimal Window?. <i>Proceedings of the International Neural Networks Society</i> , 2020 , 180-185	0.5	2
50	Semantically Enhanced Models for Commonsense Knowledge Acquisition 2018,		2
49	Sentic Patterns: Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns. <i>A Practical Guide To Sentiment Analysis</i> , 2018 , 117-151	Ο	2
48	Mood of the Planet: Challenging Visions of Big Data in the Arts. Cognitive Computation, 2021, 1-12	4.4	2
47	Predicting video engagement using heterogeneous DeepWalk. <i>Neurocomputing</i> , 2021 , 465, 228-237	5.4	2
46	Sentic Computing for Social Media Analysis, Representation, and Retrieval. <i>Computer Communications and Networks</i> , 2013 , 191-215	0.5	2
45	Speaker-Independent Multimodal Sentiment Analysis for Big Data 2019 , 13-43		1
44	A Localization Toolkit for Sentic Net 2014 ,		1
43	One Belt, One Road, One Sentiment? A Hybrid Approach to Gauging Public Opinions on the New Silk Road Initiative 2020 ,		1
42	SenticNet. A Practical Guide To Sentiment Analysis, 2017, 39-103	Ο	1
41	Efficient Semantic Search Over Structured Web Data: A GPU Approach. <i>Lecture Notes in Computer Science</i> , 2018 , 549-562	0.9	1
40	Towards IMACA: Intelligent Multimodal Affective Conversational Agent. <i>Lecture Notes in Computer Science</i> , 2012 , 656-663	0.9	1
39	Sentic Neural Networks: A Novel Cognitive Model for Affective Common Sense Reasoning. <i>Lecture Notes in Computer Science</i> , 2012 , 12-21	0.9	1

38	New Avenues in Mobile Tourism 2020,		1
37	Does semantics aid syntax? An empirical study on named entity recognition and classification. Neural Computing and Applications,1	4.8	1
36	A Novel Non-Iterative Parameter Estimation Method for Interval Type-2 Fuzzy Neural Networks Based on a Dynamic Cost Function 2019 ,		1
35	Toward hardware-aware deep-learning-based dialogue systems. Neural Computing and Applications,1	4.8	1
34	Multitask Recalibrated Aggregation Network for Medical Code Prediction. <i>Lecture Notes in Computer Science</i> , 2021 , 367-383	0.9	1
33	Concept Extraction from Natural Text for Concept Level Text Analysis. <i>A Practical Guide To Sentiment Analysis</i> , 2018 , 79-84	Ο	1
32	EmoSenticSpace: Dense Concept-Based Affective Features with Common-Sense Knowledge. <i>A Practical Guide To Sentiment Analysis</i> , 2018 , 85-116	О	1
31	Semantic Sentiment Analysis Challenge at ESWC2018. <i>Communications in Computer and Information Science</i> , 2018 , 117-128	0.3	1
30	This! Identifying New Sentiment Slang Through Orthographic Pleonasm Online: Yasss Slay Gorg Queen Ilysm. <i>IEEE Intelligent Systems</i> , 2021 , 36, 114-120	4.2	1
29	Artificial Intelligence, Social Media and Supply Chain Management: The Way Forward. <i>Electronics</i> (Switzerland), 2021 , 10, 2348	2.6	1
28	Graph routing between capsules. Neural Networks, 2021, 143, 345-354	9.1	1
27	Deep-attack over the deep reinforcement learning. Knowledge-Based Systems, 2022, 108965	7.3	1
26	Gender-based multi-aspect sentiment detection using multilabel learning. <i>Information Sciences</i> , 2022 , 606, 453-468	7.7	1
25	Storage and Update of Knowledge. A Practical Guide To Sentiment Analysis, 2019, 97-111	Ο	O
24	Sentic Applications 2015 , 107-153		0
23	Switching Between Different Ways to Think. Lecture Notes in Computer Science, 2011 , 56-69	0.9	O
22	Sentic Maxine: Multimodal Affective Fusion and Emotional Paths. <i>Lecture Notes in Computer Science</i> , 2012 , 555-565	0.9	0
21	Clustering Social Networks Using Interaction Semantics and Sentics. <i>Lecture Notes in Computer Science</i> , 2012 , 379-385	0.9	Ο

20	Landmark calibration for facial expressions and fish classification. <i>Signal, Image and Video Processing</i> ,1	1.6	О
19	TOMN: Constituent-Based Tagging Scheme. A Practical Guide To Sentiment Analysis, 2021, 59-75	Ο	О
18	Ensemble Hybrid Learning Methods for Automated Depression Detection. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 1-9	4.5	O
17	Soft labeling constraint for generalizing from sentiments in single domain. <i>Knowledge-Based Systems</i> , 2022 , 245, 108346	7.3	O
16	Sentic Computing for Social Network Analysis 2017 , 71-90		
15	Development of a Diplomatic, Information, Military, Health, and Economic Effects Modeling System. <i>International Journal of Privacy and Health Information Management</i> , 2013 , 1, 1-11	0.1	
14	Sentic Computing 2022 , 821-827		
13	ASR Hypothesis Reranking Using Prior-Informed Restricted Boltzmann Machine. <i>Lecture Notes in Computer Science</i> , 2018 , 503-514	0.9	
12	Classifying World Englishes from a Lexical Perspective: A Corpus-Based Approach. <i>Lecture Notes in Computer Science</i> , 2018 , 564-575	0.9	
11	Developing a Concept-Level Knowledge Base for Sentiment Analysis in Singlish. <i>Lecture Notes in Computer Science</i> , 2018 , 347-361	0.9	
10	GpSense: A GPU-Friendly Method for Commonsense Subgraph Matching in Massively Parallel Architectures. <i>Lecture Notes in Computer Science</i> , 2018 , 547-559	0.9	
9	Theoretical Underpinnings on Text Mining. A Practical Guide To Sentiment Analysis, 2019, 27-35	Ο	
8	Literature Review and Preliminaries. A Practical Guide To Sentiment Analysis, 2019, 9-25	0	
7	Computational Semantics for Asset Correlations. A Practical Guide To Sentiment Analysis, 2019, 37-61	Ο	
6	Sentiment Analysis for View Modeling. A Practical Guide To Sentiment Analysis, 2019, 63-96	0	
5	Sentic Patterns 2015 , 73-106		
4	Application to Sentiment Analysis. A Practical Guide To Sentiment Analysis, 2017, 105-125	0	
3	UGTO: Uncommon Words and Proper Nouns. A Practical Guide To Sentiment Analysis, 2021, 77-94	Ο	

SynTime: Token Types and Heuristic Rules. *A Practical Guide To Sentiment Analysis*, **2021**, 47-58

О

Literature Survey and Datasets. A Practical Guide To Sentiment Analysis, 2018, 37-78

(