List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846534/publications.pdf

Version: 2024-02-01

		14614	13338
132	26,318	66	130
papers	citations	h-index	g-index
145	145	145	27389
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	WASp controls oriented migration of endothelial cells to achieve functional vascular patterning. Development (Cambridge), 2022, 149, .	1.2	10
2	Formation and Maintenance of the Natural Bypass Vessels of the Brain. Frontiers in Cardiovascular Medicine, 2022, 9, 778773.	1.1	5
3	Svep1 stabilises developmental vascular anastomosis in reduced flow conditions. Development (Cambridge), 2022, 149, .	1.2	4
4	A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth. Nature Metabolism, 2022, 4, 672-682.	5.1	20
5	On the preservation of vessel bifurcations during flow-mediated angiogenic remodelling. PLoS Computational Biology, 2021, 17, e1007715.	1.5	6
6	Vasohibin 1 selectively regulates secondary sprouting and lymphangiogenesis in the zebrafish trunk. Development (Cambridge), 2021, 148, .	1.2	4
7	Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Progress in Neurobiology, 2021, 199, 101937.	2.8	68
8	Remodeling of an <i>in vitro</i> microvessel exposed to cyclic mechanical stretch. APL Bioengineering, 2021, 5, 026102.	3.3	17
9	Association between erythrocyte dynamics and vessel remodelling in developmental vascular networks. Journal of the Royal Society Interface, 2021, 18, 20210113.	1.5	20
10	Long-lived tumor-associated macrophages in glioma. Neuro-Oncology Advances, 2020, 2, vdaa127.	0.4	4
11	Lymphoma Angiogenesis Is Orchestrated by Noncanonical Signaling Pathways. Cancer Research, 2020, 80, 1316-1329.	0.4	12
12	Endothelial Cell Orientation and Polarity Are Controlled by Shear Stress and VEGF Through Distinct Signaling Pathways. Frontiers in Physiology, 2020, 11, 623769.	1.3	47
13	ATTRACT. Circulation Research, 2019, 125, 262-264.	2.0	4
14	Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Reports, 2019, 26, 1227-1241.e6.	2.9	15
15	Artery-vein specification in the zebrafish trunk is pre-patterned by heterogeneous Notch activity and balanced by flow-mediated fine tuning. Development (Cambridge), 2019, 146, .	1.2	41
16	Imaging Glioma Progression by Intravital Microscopy. Methods in Molecular Biology, 2019, 1862, 227-243.	0.4	5
17	Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. ELife, 2019, 8, .	2.8	25
18	GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. ELife, 2019, 8, .	2.8	10

#	Article	IF	CITATIONS
19	Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. Journal of Cell Biology, 2018, 217, 1651-1665.	2.3	84
20	Hold Me, but Not Too Tightâ€"Endothelial Cellâ€"Cell Junctions in Angiogenesis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029223.	2.3	57
21	Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nature Communications, 2018, 9, 4826.	5.8	53
22	lmaging of Endothelial Cell Dynamic Behavior in Zebrafish. Methods in Molecular Biology, 2018, 1846, 181-195.	0.4	1
23	NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes. Biochemical and Biophysical Research Communications, 2018, 504, 899-902.	1.0	8
24	YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. ELife, $2018, 7, .$	2.8	186
25	<scp>PAR</scp> â€3 controls endothelial planar polarity and vascular inflammation under laminar flow. EMBO Reports, 2018, 19, .	2.0	34
26	PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling. Biophysical Journal, 2018, 114, 2052-2058.	0.2	29
27	Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Scientific Reports, 2017, 7, 1217.	1.6	105
28	Tumour ischaemia by interferon-Î ³ resembles physiological blood vessel regression. Nature, 2017, 545, 98-102.	13.7	199
29	Morph or Move? How Distinct Endothelial Cell Responses to Blood Flow Shape Vascular Networks. Developmental Cell, 2017, 41, 574-576.	3.1	7
30	A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature, 2017, 550, 114-118.	13.7	58
31	Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth. EMBO Molecular Medicine, 2017, 9, 1629-1645.	3.3	54
32	The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signalling and vascular stability. Nature Communications, 2017, 8, 16002.	5.8	69
33	Blood flow boosts BMP signaling to keep vessels in shape. Journal of Cell Biology, 2016, 214, 793-795.	2.3	7
34	cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner. Development (Cambridge), 2016, 143, 3582-3590.	1.2	29
35	Glycolytic regulation of cell rearrangement in angiogenesis. Nature Communications, 2016, 7, 12240.	5.8	131
36	Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion. Cell Reports, 2016, 14, 440-448.	2.9	40

#	Article	IF	CITATIONS
37	Integrin signalling regulates YAP/TAZ to control skin homeostasis. Development (Cambridge), 2016, 143, 1674-87.	1.2	228
38	Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. Journal of Controlled Release, 2016, 227, 71-81.	4.8	123
39	Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis inÂvivo. Nature Cell Biology, 2016, 18, 443-450.	4.6	159
40	FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature, 2016, 529, 216-220.	13.7	438
41	Integrin signalling regulates YAP and TAZ to control skin homeostasis. Journal of Cell Science, 2016, 129, e1.1-e1.1.	1.2	1
42	Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. ELife, 2016, 5, e07727.	2.8	125
43	Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. ELife, 2016, 5, .	2.8	115
44	Endothelial Alpha-Parvin Controls Integrity of Developing Vasculature and Is Required for Maintenance of Cell–Cell Junctions. Circulation Research, 2015, 117, 29-40.	2.0	44
45	The Endothelial Transcription Factor ERG Promotes Vascular Stability and Growth through Wnt/β-Catenin Signaling. Developmental Cell, 2015, 32, 82-96.	3.1	190
46	Formin-Mediated Actin Polymerization at Endothelial Junctions Is Required for Vessel Lumen Formation and Stabilization. Developmental Cell, 2015, 32, 123-132.	3.1	87
47	Wiring the Vascular Network with Neural Cues: A CNS Perspective. Neuron, 2015, 87, 271-296.	3.8	140
48	Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nature Communications, 2015, 6, 7264.	5.8	143
49	Dynamic Endothelial Cell Rearrangements Drive Developmental Vessel Regression. PLoS Biology, 2015, 13, e1002125.	2.6	231
50	Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature, 2015, 520, 192-197.	13.7	466
51	PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nature Communications, 2015, 6, 7935.	5.8	86
52	Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nature Protocols, 2015, 10, 53-74.	5.5	105
53	Tissue guidance without filopodia. Communicative and Integrative Biology, 2014, 7, e28820.	0.6	9
54	Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling. Development (Cambridge), 2014, 141, 448-459.	1.2	44

#	Article	IF	CITATIONS
55	Lack of CCM1 induces hypersprouting and impairs response to flow. Human Molecular Genetics, 2014, 23, 6223-6234.	1.4	32
56	Gliomaâ€derived galectinâ€1 regulates innate and adaptive antitumor immunity. International Journal of Cancer, 2014, 134, 873-884.	2.3	71
57	Partial and Transient Reduction of Glycolysis by PFKFB3 Blockade Reduces Pathological Angiogenesis. Cell Metabolism, 2014, 19, 37-48.	7.2	429
58	The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nature Cell Biology, 2014, 16, 309-321.	4.6	328
59	Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis. Journal of the Royal Society Interface, 2014, 11, 20140543.	1.5	87
60	Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell, 2014, 26, 190-206.	7.7	358
61	Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell, 2013, 154, 651-663.	13.5	1,117
62	PP2A regulatory subunit \hat{Bl} controls endothelial contractility and vessel lumen integrity via regulation of HDAC7. EMBO Journal, 2013, 32, 2491-2503.	3.5	43
63	VEGF and Notch in Tip and Stalk Cell Selection. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a006569-a006569.	2.9	484
64	A truncation allele in <i>vascular endothelial growth factor c</i> reveals distinct modes of signaling during lymphatic and vascular development. Development (Cambridge), 2013, 140, 1497-1506.	1.2	98
65	SRF selectively controls tip cell invasive behavior in angiogenesis. Development (Cambridge), 2013, 140, 2321-2333.	1.2	59
66	Intravital imaging reveals conversion between distinct tumor vascular morphologies and localized vascular response to Sunitinib. Intravital, 2013, 2, e24790.	2.0	18
67	Inhibition of the p $110\hat{l}_\pm$ isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis. Journal of Experimental Medicine, 2013, 210, 1937-1945.	4.2	56
68	Filopodia are dispensable for endothelial tip cell guidance. Development (Cambridge), 2013, 140, 4031-4040.	1.2	178
69	SRF selectively controls tip cell invasive behavior in angiogenesis. Journal of Cell Science, 2013, 126, e1-e1.	1.2	1
70	Filopodia are dispensable for endothelial tip cell guidance. Journal of Cell Science, 2013, 126, e1-e1.	1.2	2
71	Inhibition of the p $110\hat{l}_\pm$ isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis. Journal of Cell Biology, 2013, 202, 2027OIA99.	2.3	0
72	Blood vessels on a chip. Nature, 2012, 488, 465-466.	13.7	48

#	Article	IF	CITATIONS
73	Visualization of Endothelial Actin Cytoskeleton in the Mouse Retina. PLoS ONE, 2012, 7, e47488.	1.1	34
74	Coordinating cell behaviour during blood vessel formation. Development (Cambridge), 2011, 138, 4569-4583.	1.2	313
75	Basic and Therapeutic Aspects of Angiogenesis. Cell, 2011, 146, 873-887.	13.5	2,263
76	VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nature Cell Biology, 2011, 13, 1202-1213.	4.6	272
77	A Two-Way Communication between Microglial Cells and Angiogenic Sprouts Regulates Angiogenesis in Aortic Ring Cultures. PLoS ONE, 2011, 6, e15846.	1.1	200
78	N-CAM Exhibits a Regulatory Function in Pathological Angiogenesis in Oxygen Induced Retinopathy. PLoS ONE, 2011, 6, e26026.	1.1	10
79	Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature, 2011, 473, 234-238.	13.7	350
80	Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature, 2011, 474, 511-515.	13.7	244
81	Endothelial development taking shape. Current Opinion in Cell Biology, 2011, 23, 676-85.	2.6	70
82	Laminin-Binding Integrins Induce Dll4 Expression and Notch Signaling in Endothelial Cells. Circulation Research, 2011, 109, 172-182.	2.0	101
83	Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling <i>iin vivo</i> . EMBO Reports, 2011, 12, 1135-1143.	2.0	129
84	Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development (Cambridge), 2011, 138, 4451-4463.	1.2	116
85	Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biology, 2010, 12, 943-953.	4.6	820
86	Role of Delta-like-4/Notch in the Formation and Wiring of the Lymphatic Network in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1695-1702.	1.1	118
87	VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochemical Society Transactions, 2009, 37, 1233-1236.	1.6	140
88	Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis. PLoS Computational Biology, 2009, 5, e1000549.	1.5	187
89	Nrarp Coordinates Endothelial Notch and Wnt Signaling to Control Vessel Density in Angiogenesis. Developmental Cell, 2009, 16, 70-82.	3.1	326
90	Angiogenesis: A Team Effort Coordinated by Notch. Developmental Cell, 2009, 16, 196-208.	3.1	707

#	Article	IF	Citations
91	Vascular morphogenesis: a Wnt for every vessel?. Current Opinion in Genetics and Development, 2009, 19, 476-483.	1.5	120
92	Peripheral mural cell recruitment requires cell-autonomous heparan sulfate. Blood, 2009, 114, 915-924.	0.6	37
93	Imaging Transient Blood Vessel Fusion Events in Zebrafish by Correlative Volume Electron Microscopy. PLoS ONE, 2009, 4, e7716.	1.1	61
94	Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. Journal of Theoretical Biology, 2008, 250, 25-36.	0.8	234
95	Pericytes: gatekeepers in tumour cell metastasis?. Journal of Molecular Medicine, 2008, 86, 135-144.	1.7	142
96	Angiogenesis selectively requires the p110 $\hat{l}\pm$ isoform of PI3K to control endothelial cell migration. Nature, 2008, 453, 662-666.	13.7	459
97	Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nature Medicine, 2008, 14, 448-453.	15.2	346
98	Wnt∫î²-catenin signaling controls development of the blood–brain barrier. Journal of Cell Biology, 2008, 183, 409-417.	2.3	680
99	VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 2008, 4, 241-246.	0.4	237
100	Therapeutic antibodies targeting angiomotin inhibit angiogenesis <i>in vivo</i> . FASEB Journal, 2008, 22, 880-889.	0.2	30
101	VEGF and Endothelial Guidance in Angiogenic Sprouting. , 2008, , 68-78.		11
102	Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. Journal of Clinical Investigation, 2008, 118, 3725-3737.	3.9	216
103	Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 2007, 21, 316-331.	2.7	157
104	VEGF and Notch Signaling. Cell Adhesion and Migration, 2007, 1, 133-136.	1.1	139
105	Growth Factor Gradients in Vascular Patterning. Novartis Foundation Symposium, 2007, 283, 194-206.	1.2	30
106	Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007, 445, 776-780.	13.7	1,515
107	Pericytes limit tumor cell metastasis. Journal of Clinical Investigation, 2006, 116, 642-651.	3.9	294
108	Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment. Biochemical Society Transactions, 2006, 34, 454-455.	1.6	11

#	Article	IF	CITATIONS
109	Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens. Angiogenesis, 2006, 9, 209-224.	3.7	30
110	How do endothelial cells orientate?., 2005,, 3-15.		72
111	Role of pericytes in vascular morphogenesis. , 2005, , 115-125.		103
112	Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Developmental Dynamics, 2004, 231, 503-509.	0.8	243
113	Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice. Current Opinion in Nephrology and Hypertension, 2004, 13, 45-52.	1.0	57
114	Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 2003, 314, 15-23.	1.5	931
115	Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Developmental Biology, 2003, 262, 225-241.	0.9	243
116	Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes and Development, 2003, 17, 1835-1840.	2.7	557
117	VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology, 2003, 161, 1163-1177.	2.3	2,483
118	Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes and Development, 2002, 16, 2684-2698.	2.7	779
119	Defective Associations between Blood Vessels and Brain Parenchyma Lead to Cerebral Hemorrhage in Mice Lacking αv Integrins. Molecular and Cellular Biology, 2002, 22, 7667-7677.	1.1	162
120	Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO Journal, 2002, 21, 4307-4316.	3.5	339
121	Lack of Pericytes Leads to Endothelial Hyperplasia and Abnormal Vascular Morphogenesis. Journal of Cell Biology, 2001, 153, 543-554.	2.3	949
122	Differential expression of endothelial ?-catenin and plakoglobin during development and maturation of the blood-brain and blood-retina barrier in the chicken. Developmental Dynamics, 2000, 217, 86-98.	0.8	41
123	N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Developmental Dynamics, 2000, 218, 472-479.	0.8	231
124	The peripapillary glia of the optic nerve head in the chicken retina. The Anatomical Record, 2000, 259, 263-275.	2.3	23
125	R- and B-cadherin expression defines subpopulations of glial cells involved in axonal guidance in the optic nerve head of the chicken. Glia, 2000, 31, 131-143.	2.5	16
126	R- and B-cadherin expression defines subpopulations of glial cells involved in axonal guidance in the optic nerve head of the chicken. Glia, 2000, 31, 131-43.	2.5	6

#	Article	IF	CITATIONS
127	The Pecten Oculi of the Chicken: A Model System for Vascular Differentiation and Barrier Maturation. International Review of Cytology, 1999, 187, 111-159.	6.2	45
128	N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development*. European Journal of Neuroscience, 1999, 11, 1191-1201.	1.2	54
129	Ultrastructural localization of adhesion molecules in the healthy. Cell and Tissue Research, 1999, 296, 259-269.	1.5	86
130	Differentiation of a unique macroglial cell type in the pecten oculi of the chicken., 1999, 28, 201-214.		12
131	Maturation of the blood–retina barrier in the developing pecten oculi of the chicken. Developmental Brain Research, 1997, 100, 205-219.	2.1	35
132	The pecten oculi of the chicken as a new in vivo model of the blood-brain barrier. Cell and Tissue Research, 1996, 285, 91-100.	1.5	36