Austin Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846258/publications.pdf

Version: 2024-02-01

		4146	5679
161	42,538	87	162
papers	citations	h-index	g-index
100	100	100	27210
183	183	183	27318
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	NMD is required for timely cell fate transitions by fine-tuning gene expression and regulating translation. Genes and Development, 2022, 36, 348-367.	5.9	17
2	Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell, 2021, 28, 453-471.e8.	11.1	151
3	Cancer-Related Mutations Are Not Enriched in Naive Human Pluripotent Stem Cells. Cell Stem Cell, 2021, 28, 164-169.e2.	11.1	14
4	Cooperative genetic networks drive embryonic stem cell transition from $na\tilde{A}$ ve to formative pluripotency. EMBO Journal, 2021, 40, e105776.	7.8	31
5	Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell, 2021, 28, 1016-1022.e4.	11.1	162
6	Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell, 2021, 28, 1040-1056.e6.	11.1	201
7	Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
8	Cell state transitions: definitions and challenges. Development (Cambridge), 2021, 148, .	2.5	18
9	Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development (Cambridge), 2021, 148, .	2.5	35
10	GMP-grade neural progenitor derivation and differentiation from clinical-grade human embryonic stem cells. Stem Cell Research and Therapy, 2020, 11, 406.	5.5	7
11	Microfluidic platform for 3D cell culture with live imaging and clone retrieval. Lab on A Chip, 2020, 20, 2580-2591.	6.0	17
12	Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO Journal, 2020, 39, e102591.	7.8	20
13	In Vitro Recapitulation of Developmental Transitions in Human Neural Stem Cells. Stem Cells, 2019, 37, 1429-1440.	3.2	6
14	Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency. Stem Cell Reports, 2019, 13, 1083-1098.	4.8	60
15	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56
16	Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency. Cell Stem Cell, 2019, 24, 785-801.e7.	11.1	85
17	The Cell-Surface Marker Sushi Containing Domain 2 Facilitates Establishment of Human Naive Pluripotent Stem Cells. Stem Cell Reports, 2019, 12, 1212-1222.	4.8	83
18	Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development (Cambridge), 2019, 146, .	2.5	77

#	Article	IF	CITATIONS
19	Capacitation of human na \tilde{A} -ve pluripotent stem cells for multi-lineage differentiation. Development (Cambridge), 2019, 146, .	2.5	83
20	Longâ€Term Perfusion Culture of Monoclonal Embryonic Stem Cells in 3D Hydrogel Beads for Continuous Optical Analysis of Differentiation. Small, 2019, 15, e1804576.	10.0	35
21	A common molecular logic determines embryonic stem cell selfâ€renewal and reprogramming. EMBO Journal, 2019, 38, .	7.8	34
22	Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human preimplantation epiblast. Development (Cambridge), 2018, 145, .	2.5	155
23	Pluripotency Deconstructed. Development Growth and Differentiation, 2018, 60, 44-52.	1.5	72
24	Esrrb Complementation Rescues Development of Nanog-Null Germ Cells. Cell Reports, 2018, 22, 332-339.	6.4	45
25	Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development (Cambridge), 2018, 145, .	2.5	167
26	LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. Journal of Cell Science, 2018, 131, .	2.0	4
27	Interplay of cell–cell contacts and RhoA/ <scp>MRTF</scp> â€A signaling regulates cardiomyocyte identity. EMBO Journal, 2018, 37, .	7.8	66
28	Negative feedback via RSK modulates Erkâ€dependent progression from naÃ⁻ve pluripotency. EMBO Reports, 2018, 19, .	4.5	28
29	Formative pluripotency: the executive phase in a developmental continuum. Development (Cambridge), 2017, 144, 365-373.	2.5	345
30	Tracking the embryonic stem cell transition from ground state pluripotency. Development (Cambridge), 2017, 144, 1221-1234.	2.5	226
31	The Art of Capturing Pluripotency: Creating the Right Culture. Stem Cell Reports, 2017, 8, 1457-1464.	4.8	39
32	Gene Editing in Rat Embryonic Stem Cells to Produce InÂVitro Models and InÂVivo Reporters. Stem Cell Reports, 2017, 9, 1262-1274.	4.8	10
33	NODAL Secures Pluripotency upon Embryonic Stem Cell Progression fromÂthe Ground State. Stem Cell Reports, 2017, 9, 77-91.	4.8	74
34	Epigenetic resetting of human pluripotency. Development (Cambridge), 2017, 144, 2748-2763.	2.5	225
35	A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. ELife, 2017, 6, .	6.0	35
36	A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells. PLoS Computational Biology, 2017, 13, e1005713.	3.2	7

#	Article	IF	CITATIONS
37	Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO Journal, 2016, 35, 618-634.	7.8	155
38	A method to identify and analyze biological programs through automated reasoning. Npj Systems Biology and Applications, $2016, 2, \ldots$	3.0	42
39	Convergence of cMyc and βâ€catenin on Tcf7l1 enables endoderm specification. EMBO Journal, 2016, 35, 356-368.	7.8	35
40	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	28.9	209
41	Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports, 2016, 6, 437-446.	4.8	310
42	Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biology, 2015, 16, 149.	8.8	104
43	Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140365.	4.0	34
44	Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Developmental Cell, 2015, 35, 366-382.	7.0	383
45	Looking inwards: opening a window onto human development. Development (Cambridge), 2015, 142, 1-2.	2.5	13
46	A Model-Based Analysis of Culture-Dependent Phenotypes of mESCs. PLoS ONE, 2014, 9, e92496.	2.5	32
47	Mapping the route from naive pluripotency to lineage specification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130540.	4.0	183
48	Differentiation of Human Induced Pluripotent Stem Cells into Brown and White Adipocytes: Role of Pax3. Stem Cells, 2014, 32, 1459-1467.	3.2	77
49	The ability of inner-cell-mass cells to self-renew asÂembryonic stem cells is acquired following epiblastÂspecification. Nature Cell Biology, 2014, 16, 513-525.	10.3	386
50	Potency unchained. Nature, 2014, 505, 622-623.	27.8	4
51	Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human. Cell, 2014, 158, 1254-1269.	28.9	784
52	Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency. Cell Reports, 2014, 7, 1968-1981.	6.4	117
53	The Nature of Embryonic Stem Cells. Annual Review of Cell and Developmental Biology, 2014, 30, 647-675.	9.4	371
54	Defining an essential transcription factor program for na \tilde{A} ve pluripotency. Science, 2014, 344, 1156-1160.	12.6	362

#	Article	IF	Citations
55	Genetic Exploration of the Exit from Self-Renewal Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 385-393.	11.1	170
56	Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO Journal, 2013, 32, 2561-2574.	7.8	199
57	Robust Self-Renewal of Rat Embryonic Stem Cells Requires Fine-Tuning ofÂGlycogen Synthase Kinase-3 Inhibition. Stem Cell Reports, 2013, 1, 209-217.	4.8	61
58	Neural Stem Cells Engrafted in the Adult Brain Fuse with Endogenous Neurons. Stem Cells and Development, 2013, 22, 538-547.	2.1	22
59	Naive pluripotency is associated with global DNA hypomethylation. Nature Structural and Molecular Biology, 2013, 20, 311-316.	8.2	465
60	Nanog Heterogeneity: Tilting at Windmills?. Cell Stem Cell, 2013, 13, 6-7.	11,1	37
61	Exit from Pluripotency Is Gated by Intracellular Redistribution of the bHLH Transcription Factor Tfe3. Cell, 2013, 153, 335-347.	28.9	296
62	The mammalian germline as a pluripotency cycle. Development (Cambridge), 2013, 140, 2495-2501.	2.5	55
63	Rebuilding Pluripotency from Primordial Germ Cells. Stem Cell Reports, 2013, 1, 66-78.	4.8	63
64	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	5.9	121
65	Stem Cells Expanded from the Human Embryonic Hindbrain Stably Retain Regional Specification and High Neurogenic Potency. Journal of Neuroscience, 2013, 33, 12407-12422.	3.6	74
66	Automated Large-Scale Culture and Medium-Throughput Chemical Screen for Modulators of Proliferation and Viability of Human Induced Pluripotent Stem Cell–Derived Neuroepithelial-like Stem Cells. Journal of Biomolecular Screening, 2013, 18, 258-268.	2.6	38
67	Stem cells and regeneration: a special issue. Development (Cambridge), 2013, 140, 2445-2445.	2.5	3
68	A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1. PLoS ONE, 2013, 8, e77053.	2.5	53
69	A Genome-Wide RNAi Screen Reveals MAP Kinase Phosphatases as Key ERK Pathway Regulators during Embryonic Stem Cell Differentiation. PLoS Genetics, 2012, 8, e1003112.	3.5	72
70	Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development (Cambridge), 2012, 139, 3301-3305.	2.5	70
71	Pluripotency in the Embryo and in Culture. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008128-a008128.	5.5	256
72	JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency. Nature Communications, 2012, 3, 817.	12.8	93

#	Article	lF	CITATIONS
73	Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid. Neuroscience Research, 2012, 72, 23-31.	1.9	38
74	The Transcriptional and Epigenomic Foundations of Ground State Pluripotency. Cell, 2012, 149, 590-604.	28.9	774
75	Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons. PLoS ONE, 2012, 7, e29597.	2.5	254
76	Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal. Cell Stem Cell, 2012, 11, 491-504.	11.1	348
77	Treatment of a Mouse Model of Spinal Cord Injury by Transplantation of Human Induced Pluripotent Stem Cell-Derived Long-Term Self-Renewing Neuroepithelial-Like Stem Cells. Stem Cells, 2012, 30, 1163-1173.	3.2	209
78	Self-organizing circuitry and emergent computation in mouse embryonic stem cells. Stem Cell Research, 2012, 8, 324-333.	0.7	21
79	The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiology of Disease, 2012, 46, 41-51.	4.4	159
80	Human hypoblast formation is not dependent on FGF signalling. Developmental Biology, 2012, 361, 358-363.	2.0	208
81	Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. Journal of Cell Science, 2011, 124, 1867-1877.	2.0	59
82	'No' to ban on stem-cell patents. Nature, 2011, 472, 418-418.	27.8	11
83	Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions. Current Biology, 2011, 21, 65-71.	3.9	154
84	Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 2011, 13, 838-845.	10.3	475
85	The origin and identity of embryonic stem cells. Development (Cambridge), 2011, 138, 3-8.	2.5	183
86	Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells <i>In vitro</i> . Glia, 2011, 59, 1588-1599.	4.9	57
87	The Liberation of Embryonic Stem Cells. PLoS Genetics, 2011, 7, e1002019.	3.5	84
88	A PiggyBac-Based Recessive Screening Method to Identify Pluripotency Regulators. PLoS ONE, 2011, 6, e18189.	2.5	61
89	Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. Development (Cambridge), 2011, 138, e1-e1.	2.5	1
90	The ground state of pluripotency. Biochemical Society Transactions, 2010, 38, 1027-1032.	3.4	323

#	Article	IF	CITATIONS
91	Imaging-based chemical screens using normal and glioma-derived neural stem cells. Biochemical Society Transactions, 2010, 38, 1067-1071.	3.4	28
92	Pluripotent stem cells: private obsession and public expectation. EMBO Molecular Medicine, 2010, 2, 113-116.	6.9	10
93	A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development (Cambridge), 2010, 137, 3185-3192.	2.5	147
94	Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development (Cambridge), 2010, 137, 2279-2287.	2.5	133
95	Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development (Cambridge), 2010, 137, 693-704.	2.5	68
96	Mouse and human induced pluripotent stem cells as a source for multipotent Isl1 ⁺ cardiovascular progenitors. FASEB Journal, 2010, 24, 700-711.	0.5	110
97	Stat3 Activation Is Limiting for Reprogramming to Ground State Pluripotency. Cell Stem Cell, 2010, 7, 319-328.	11.1	215
98	CD133 (Prominin) Negative Human Neural Stem Cells Are Clonogenic and Tripotent. PLoS ONE, 2009, 4, e5498.	2.5	115
99	Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development (Cambridge), 2009, 136, 3215-3222.	2.5	512
100	Design principles of pluripotency. EMBO Molecular Medicine, 2009, 1, 251-254.	6.9	10
101	Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nature Medicine, 2009, 15, 814-818.	30.7	188
102	Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development (Cambridge), 2009, 136, 1063-1069.	2.5	669
103	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	28.9	904
			No.
104	Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.	11.1	881
104	Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580. Naive and Primed Pluripotent States. Cell Stem Cell, 2009, 4, 487-492.	11.1	1,579
	for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.		
105	for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580. Naive and Primed Pluripotent States. Cell Stem Cell, 2009, 4, 487-492.	11.1	1,579

#	Article	IF	CITATIONS
109	The ground state of embryonic stem cell self-renewal. Nature, 2008, 453, 519-523.	27.8	3,057
110	Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biology, 2008, 6, e253.	5.6	728
111	Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Molecular and Cellular Neurosciences, 2008, 38, 245-258.	2.2	199
112	Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Molecular and Cellular Neurosciences, 2008, 38, 393-403.	2.2	56
113	Capturing Pluripotency. Cell, 2008, 132, 532-536.	28.9	413
114	Capture of Authentic Embryonic Stem Cells from Rat Blastocysts. Cell, 2008, 135, 1287-1298.	28.9	725
115	Neuroepithelial Cells Supply an Initial Transient Wave of MSC Differentiation. Cell, 2007, 129, 1377-1388.	28.9	481
116	Essential Alterations of Heparan Sulfate During the Differentiation of Embryonic Stem Cells to Sox1-Enhanced Green Fluorescent Protein-Expressing Neural Progenitor Cells. Stem Cells, 2007, 25, 1913-1923.	3.2	126
117	FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development (Cambridge), 2007, 134, 2895-2902.	2.5	695
118	Nanog safeguards pluripotency and mediates germline development. Nature, 2007, 450, 1230-1234.	27.8	1,354
119	Tripotential Differentiation of Adherently Expandable Neural Stem (NS) Cells. PLoS ONE, 2007, 2, e298.	2.5	96
120	Reprogramming Efficiency Following Somatic Cell Nuclear Transfer Is Influenced by the Differentiation and Methylation State of the Donor Nucleus. Stem Cells, 2006, 24, 2007-2013.	3.2	251
121	Nanog promotes transfer of pluripotency after cell fusion. Nature, 2006, 441, 997-1001.	27.8	321
122	A glossary for stem-cell biology. Nature, 2006, 441, 1060-1060.	27.8	147
123	Exploitation of adherent neural stem cells in basic and applied neurobiology. Regenerative Medicine, 2006, 1, 111-118.	1.7	28
124	Notch Promotes Neural Lineage Entry by Pluripotent Embryonic Stem Cells. PLoS Biology, 2006, 4, e121.	5.6	234
125	Adherent Neural Stem (NS) Cells from Fetal and Adult Forebrain. Cerebral Cortex, 2006, 16, i112-i120.	2.9	233
126	Unequal segregation of parental chromosomes in embryonic stem cell hybrids. Molecular Reproduction and Development, 2005, 71, 305-314.	2.0	37

#	Article	IF	Citations
127	Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell. PLoS Biology, 2005, 3, e283.	5.6	761
128	The Battlefield of Pluripotency. Cell, 2005, 123, 757-760.	28.9	28
129	Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone, 2005, 36, 758-769.	2.9	245
130	Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice. Developmental Biology, 2005, 281, 1-21.	2.0	84
131	Identification of Genes Regulated by Leukemia-Inhibitory Factor in the Mouse Uterus at the Time of Implantation. Molecular Endocrinology, 2004, 18, 2185-2195.	3.7	63
132	Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 2004, 23, 7150-7160.	5.9	489
133	SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Molecular and Cellular Neurosciences, 2004, 27, 332-342.	2.2	117
134	An unpaired mouse centromere passes consistently through male meiosis and does not significantly compromise spermatogenesis. Chromosoma, 2003, 112, 183-189.	2,2	11
135	Fusion brings down barriers. Nature, 2003, 422, 823-825.	27.8	120
136	Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology, 2003, 21, 183-186.	17.5	1,374
137	Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nature Biotechnology, 2003, 21, 443-447.	17.5	126
138	Differentiation and gene regulation Programming, reprogramming and regeneration. Current Opinion in Genetics and Development, 2003, 13, 445-447.	3.3	6
139	Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell, 2003, 113, 643-655.	28.9	2,933
140	BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3. Cell, 2003, 115, 281-292.	28.9	1,930
141	Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from $\langle i \rangle Sox1 \langle i \rangle - \langle i \rangle gfp \langle i \rangle$ knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11836-11841.	7.1	228
142	Genesis of embryonic stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1397-1402.	4.0	109
143	Rapid Loss of Oct-4 and Pluripotency in Cultured Rodent Blastocysts and Derivative Cell Lines1. Biology of Reproduction, 2003, 68, 222-229.	2.7	141
144	Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. Journal of Cell Science, 2002, 115, 3657-3665.	2.0	123

#	Article	IF	CITATIONS
145	Signalling, cell cycle and pluripotency in embryonic stem cells. Trends in Cell Biology, 2002, 12, 432-438.	7.9	667
146	Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nature Biotechnology, 2002, 20, 1240-1245.	17.5	303
147	Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development (Cambridge), 2001, 128, 2333-2339.	2.5	230
148	Signaling Mechanisms Regulating Self-Renewal and Differentiation of Pluripotent Embryonic Stem Cells. Cells Tissues Organs, 1999, 165, 131-143.	2.3	178
149	Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells. Developmental Biology, 1999, 210, 30-43.	2.0	517
150	Cell therapy: In search of pluripotency. Current Biology, 1998, 8, R802-R804.	3.9	48
151	Generation of purified neural precursors from embryonic stem cells by lineage selection. Current Biology, 1998, 8, 971-S2.	3.9	443
152	Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4. Cell, 1998, 95, 379-391.	28.9	3,037
153	Maintenance of pluripotential embryonic stem cells by stem cell selection. Reproduction, Fertility and Development, 1998, 10, 527.	0.4	48
154	Paracrine Induction of Stem Cell Renewal by LIF-Deficient Cells: A New ES Cell Regulatory Pathway. Developmental Biology, 1998, 203, 149-162.	2.0	110
155	Rat and mouse epiblasts differ in their capacity to generate extraembryonic endoderm. Reproduction, Fertility and Development, 1998, 10, 517.	0.4	20
156	A Schwann cell mitogen accompanying regeneration of motor neurons. Nature, 1997, 390, 614-618.	27.8	173
157	Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mechanisms of Development, 1996, 57, 123-131.	1.7	132
158	Essential function of LIF receptor in motor neurons. Nature, 1995, 378, 724-727.	27.8	319
159	Derivation of Germline Competent Embryonic Stem Cells with a Combination of Interleukin-6 and Soluble Interleukin-6 Receptor. Experimental Cell Research, 1994, 215, 237-239.	2.6	81
160	Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mechanisms of Development, 1994, 45, 163-171.	1.7	200
161	Introduction: Mammalian stem cell systems. Seminars in Cell Biology, 1992, 3, 383-384.	3.4	9