## Karl Ekwall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846222/publications.pdf Version: 2024-02-01



KADI EKMALI

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Comparative Functional Genomics of the Fission Yeasts. Science, 2011, 332, 930-936.                                                                                                                        | 12.6 | 458       |
| 2  | Transient Inhibition of Histone Deacetylation Alters the Structural and Functional Imprint at Fission<br>Yeast Centromeres. Cell, 1997, 91, 1021-1032.                                                     | 28.9 | 368       |
| 3  | Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms<br>distinct from those of Saccharomyces cerevisiae. Nature Structural and Molecular Biology, 2010, 17,<br>251-257. | 8.2  | 215       |
| 4  | RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing.<br>Genes and Development, 2005, 19, 2301-2306.                                                           | 5.9  | 199       |
| 5  | FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.                                                                                                                        | 5.3  | 195       |
| 6  | Histone modification patterns and epigenetic codes. Biochimica Et Biophysica Acta - General Subjects,<br>2009, 1790, 863-868.                                                                              | 2.4  | 184       |
| 7  | Functional Divergence between Histone Deacetylases in Fission Yeast by Distinct Cellular Localization<br>and In Vivo Specificity. Molecular and Cellular Biology, 2002, 22, 2170-2181.                     | 2.3  | 174       |
| 8  | Epigenetic Regulation of Chromatin States in <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor<br>Perspectives in Biology, 2015, 7, a018770.                                                           | 5.5  | 161       |
| 9  | Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast.<br>EMBO Journal, 2005, 24, 2906-2918.                                                                    | 7.8  | 150       |
| 10 | Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16648-16653.            | 7.1  | 123       |
| 11 | Genome-wide analysis of HDAC function. Trends in Genetics, 2005, 21, 608-615.                                                                                                                              | 6.7  | 111       |
| 12 | Epigenetic Control of Centromere Behavior. Annual Review of Genetics, 2007, 41, 63-81.                                                                                                                     | 7.6  | 89        |
| 13 | The Domain Structure of Centromeres Is Conserved from Fission Yeast to Humans. Molecular Biology of the Cell, 2001, 12, 2767-2775.                                                                         | 2.1  | 83        |
| 14 | CHD1 remodelers regulate nucleosome spacing <i>in vitro</i> and align nucleosomal arrays over gene coding regions in <i>S. pombe</i> . EMBO Journal, 2012, 31, 4388-4403.                                  | 7.8  | 82        |
| 15 | A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. EMBO Journal, 2007, 26, 2868-2879.                                                                                      | 7.8  | 78        |
| 16 | Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nature Structural and Molecular Biology, 2014, 21, 236-243.                                           | 8.2  | 75        |
| 17 | Topoisomerase I regulates open chromatin and controls gene expression in vivo. EMBO Journal, 2010, 29, 2126-2134.                                                                                          | 7.8  | 73        |
| 18 | The FUN30 Chromatin Remodeler, Fft3, Protects Centromeric and Subtelomeric Domains from Euchromatin Formation. PLoS Genetics, 2011, 7, e1001334.                                                           | 3.5  | 71        |

Karl Ekwall

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The <scp>P</scp> af1 complex factors <scp>L</scp> eo1 and <scp>P</scp> af1 promote local histone turnover to modulate chromatin states in fission yeast. EMBO Reports, 2015, 16, 1673-1687.                                        | 4.5  | 69        |
| 20 | The Schizosaccharomyces pombe JmjC-Protein, Msc1, Prevents H2A.Z Localization in Centromeric and Subtelomeric Chromatin Domains. PLoS Genetics, 2009, 5, e1000726.                                                                 | 3.5  | 61        |
| 21 | The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in <i>S. pombe</i> . Nucleus, 2012, 3, 77-87.                                                                  | 2.2  | 60        |
| 22 | Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nature Communications, 2021, 12, 4800.                                                             | 12.8 | 56        |
| 23 | The Fun30 Chromatin Remodeler Fft3 Controls Nuclear Organization and Chromatin Structure of Insulators and Subtelomeres in Fission Yeast. PLoS Genetics, 2015, 11, e1005101.                                                       | 3.5  | 52        |
| 24 | A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Research, 2015, 25, 872-883.                                                    | 5.5  | 51        |
| 25 | Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing. EMBO Journal, 2007, 26, 2477-2488.                                                                               | 7.8  | 47        |
| 26 | Fission Yeast lec1-Ino80-Mediated Nucleosome Eviction Regulates Nucleotide and Phosphate<br>Metabolism. Molecular and Cellular Biology, 2010, 30, 657-674.                                                                         | 2.3  | 45        |
| 27 | Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1. PLoS ONE, 2007, 2, e386.                                                                                                 | 2.5  | 44        |
| 28 | Transcription-coupled recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and H3.3 occupancy at active chromatin regions. Epigenetics and Chromatin, 2015, 8, 4.                                  | 3.9  | 42        |
| 29 | Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget, 2017, 8, 28812-28825. | 1.8  | 42        |
| 30 | Mutations in histone modulators are associated with prolonged survival during azacitidine therapy.<br>Oncotarget, 2016, 7, 22103-22115.                                                                                            | 1.8  | 37        |
| 31 | Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. Methods, 2009, 48, 218-225.                                                                                                                              | 3.8  | 36        |
| 32 | H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Reports, 2019, 20, e48111.                                                                                                                       | 4.5  | 35        |
| 33 | Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Research, 2019, 47, 1671-1691.                                                                      | 14.5 | 34        |
| 34 | Podbat: A Novel Genomic Tool Reveals Swr1-Independent H2A.Z Incorporation at Gene Coding<br>Sequences through Epigenetic Meta-Analysis. PLoS Computational Biology, 2011, 7, e1002163.                                             | 3.2  | 29        |
| 35 | Telomeric Repeats Facilitate CENP-ACnp1 Incorporation via Telomere Binding Proteins. PLoS ONE, 2013, 8, e69673.                                                                                                                    | 2.5  | 27        |
| 36 | Cancer-specific changes in DNA methylation reveal aberrant silencing and activation of enhancers in leukemia. Blood, 2017, 129, e13-e25.                                                                                           | 1.4  | 27        |

KARL EKWALL

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The Roles of SNF2/SWI2 Nucleosome Remodeling Enzymes in Blood Cell Differentiation and Leukemia.<br>BioMed Research International, 2015, 2015, 1-17.                                        | 1.9  | 23        |
| 38 | Topoisomerases, chromatin and transcription termination. Transcription, 2011, 2, 66-70.                                                                                                     | 3.1  | 22        |
| 39 | Transcriptional regulation at the yeast nuclear envelope. Nucleus, 2013, 4, 379-389.                                                                                                        | 2.2  | 22        |
| 40 | Restoration of KMT2C/MLL3 in human colorectal cancer cells reinforces genome-wide H3K4me1 profiles and influences cell growth and gene expression. Clinical Epigenetics, 2020, 12, 74.      | 4.1  | 22        |
| 41 | Regulating retrotransposon activity through the use of alternative transcription start sites. EMBO<br>Reports, 2016, 17, 753-768.                                                           | 4.5  | 21        |
| 42 | Budding yeastCAN1gene as a selection marker in fission yeast. Nucleic Acids Research, 1991, 19, 1150-1150.                                                                                  | 14.5 | 19        |
| 43 | CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Research, 2017, 45, 5153-5169.                                                               | 14.5 | 19        |
| 44 | Spore Analysis and Tetrad Dissection of <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor<br>Protocols, 2017, 2017, pdb.prot091710.                                                     | 0.3  | 19        |
| 45 | Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation.<br>Experimental Cell Research, 2010, 316, 1316-1323.                                               | 2.6  | 18        |
| 46 | RNAi mediates post-transcriptional repression of gene expression in fission yeast<br>Schizosaccharomyces pombe. Biochemical and Biophysical Research Communications, 2014, 444,<br>254-259. | 2.1  | 18        |
| 47 | Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence. Epigenetics and Chromatin, 2019, 12, 45.                                    | 3.9  | 17        |
| 48 | AML displays increased CTCF occupancy associated with aberrant gene expression and transcription factor binding. Blood, 2020, 136, 339-352.                                                 | 1.4  | 17        |
| 49 | Setting up <i>Schizosaccharomyces pombe</i> Crosses/Matings. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091694.                                                                      | 0.3  | 16        |
| 50 | Genetic Analysis of <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor Protocols, 2017, 2017, pdb.top079772.                                                                             | 0.3  | 15        |
| 51 | ABCE1 Is a Highly Conserved RNA Silencing Suppressor. PLoS ONE, 2015, 10, e0116702.                                                                                                         | 2.5  | 14        |
| 52 | A second Wpl1 antiâ€cohesion pathway requires dephosphorylation of fission yeast kleisin Rad21 by PP 4.<br>EMBO Journal, 2017, 36, 1364-1378.                                               | 7.8  | 13        |
| 53 | Chromatin Immunoprecipitation Using Microarrays. Methods in Molecular Biology, 2009, 529, 279-295.                                                                                          | 0.9  | 12        |
| 54 | The Paradox of Silent Heterochromatin. Science, 2008, 320, 624-625.                                                                                                                         | 12.6 | 11        |

Karl Ekwall

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | DNA Topoisomerase III Localizes to Centromeres and Affects Centromeric CENP-A Levels in Fission<br>Yeast. PLoS Genetics, 2013, 9, e1003371.                                                                                 | 3.5  | 11        |
| 56 | Histone H2B Ubiquitylation Regulates Histone Gene Expression by Suppressing Antisense Transcription in Fission Yeast. Genetics, 2019, 213, 161-172.                                                                         | 2.9  | 11        |
| 57 | High-Throughput Flow Cytometry Combined with Genetic Analysis Brings New Insights into the<br>Understanding of Chromatin Regulation of Cellular Quiescence. International Journal of Molecular<br>Sciences, 2020, 21, 9022. | 4.1  | 10        |
| 58 | Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin. Scientific Reports, 2020, 10, 6055.                                                                                                              | 3.3  | 8         |
| 59 | Selecting Schizosaccharomyces pombe Diploids. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091702.                                                                                                                     | 0.3  | 7         |
| 60 | Mating-Type Determination in <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091728.                                                                                                   | 0.3  | 6         |
| 61 | The binding of Chp2's chromodomain to methylated H3K9 is essential for Chp2's role in<br>heterochromatin assembly in fission yeast. PLoS ONE, 2018, 13, e0201101.                                                           | 2.5  | 5         |
| 62 | The CDK Pef1 and protein phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes. ELife, 2020, 9, .                                                                                     | 6.0  | 5         |
| 63 | Panspecies Small-Molecule Disruptors of Heterochromatin-Mediated Transcriptional Gene Silencing.<br>Molecular and Cellular Biology, 2015, 35, 662-674.                                                                      | 2.3  | 3         |
| 64 | Topokaryotyping demonstrates single cell variability and stress dependent variations in nuclear envelope associated domains. Nucleic Acids Research, 2018, 46, e135-e135.                                                   | 14.5 | 3         |
| 65 | Chromatin remodeler Fft3 plays a dual role at blocked DNA replication forks. Life Science Alliance, 2019, 2, e201900433.                                                                                                    | 2.8  | 3         |
| 66 | Ethyl Methanesulfonate Mutagenesis in <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor<br>Protocols, 2017, 2017, pdb.prot091736.                                                                                       | 0.3  | 1         |
| 67 | The Role of Non-Catalytic Domains of Hrp3 in Nucleosome Remodeling. International Journal of Molecular Sciences, 2021, 22, 1793.                                                                                            | 4.1  | 0         |
| 68 | Mutations in Histone Modulators Are Associated with Prolonged Survival during Azacitidine Therapy.<br>Blood, 2015, 126, 2839-2839.                                                                                          | 1.4  | 0         |