Andrew J Wiemer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846120/publications.pdf

Version: 2024-02-01

59	1,636	26	38
papers	citations	h-index	g-index
63	63	63	1755
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stepping forward in antibody-drug conjugate development. , 2022, 229, 107917.		60
2	Synthesis and Metabolism of BTN3A1 Ligands: Studies on Diene Modifications to the Phosphoantigen Scaffold. ACS Medicinal Chemistry Letters, 2022, 13, 164-170.	1.3	5
3	Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chemical Biology, 2022, 29, 985-995.e5.	2.5	19
4	Efficiency of bis-amidate phosphonate prodrugs. Bioorganic and Medicinal Chemistry Letters, 2022, 66, 128724.	1.0	4
5	Generation of effector VÎ ³ 9Vδ2 TÂcells and evaluation of their response to phosphoantigen-loaded cells. STAR Protocols, 2022, 3, 101422.	0.5	2
6	New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacological Reviews, 2022, 74, 680-713.	7.1	14
7	Synthesis and Metabolism of BTN3A1 Ligands: Studies on Modifications of the Allylic Alcohol. ACS Medicinal Chemistry Letters, 2021, 12, 136-142.	1.3	4
8	Generation of Singleâ€Chain Variable Fragment (scFv) Libraries for Use in Phage Display. Current Protocols, 2021, 1, e182.	1.3	3
9	Incorporation of a FRET pair within a phosphonate diester. Bioorganic Chemistry, 2021, 114, 105048.	2.0	3
10	Potent double prodrug forms of synthetic phosphoantigens. Bioorganic and Medicinal Chemistry, 2020, 28, 115666.	1.4	6
11	Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacology and Translational Science, 2020, 3, 613-626.	2.5	39
12	Structureâ€Activity Relationships of Butyrophilin 3 Ligands. ChemMedChem, 2020, 15, 1030-1039.	1.6	14
13	Synthesis and Bioactivity of the Alanyl Phosphonamidate Stereoisomers Derived from a Butyrophilin Ligand. ACS Medicinal Chemistry Letters, 2019, 10, 1284-1289.	1.3	11
14	A luciferase lysis assay reveals in vivo malignant cell sensitization by phosphoantigen prodrugs. Biochemical Pharmacology, 2019, 170, 113668.	2.0	3
15	Toward Broad Spectrum Dihydrofolate Reductase Inhibitors Targeting Trimethoprim Resistant Enzymes Identified in Clinical Isolates of Methicillin Resistant <i>Staphylococcus aureus</i> Infectious Diseases, 2019, 5, 1896-1906.	1.8	16
16	Regulation of the Notch-ATM-abl axis by geranylgeranyl diphosphate synthase inhibition. Cell Death and Disease, 2019, 10, 733.	2.7	6
17	Probing the Ligand-Binding Pocket of BTN3A1. Journal of Medicinal Chemistry, 2019, 62, 6814-6823.	2.9	11
18	Stability and Efficiency of Mixed Aryl Phosphonate Prodrugs. ChemMedChem, 2019, 14, 1597-1603.	1.6	13

#	Article	IF	CITATIONS
19	Tropolone-induced effects on the unfolded protein response pathway and apoptosis in multiple myeloma cells are dependent on iron. Leukemia Research, 2019, 77, 17-27.	0.4	6
20	A power law function describes the time- and dose-dependency of $\hat{V^{3}9V^{2}}$ T cell activation by phosphoantigens. Biochemical Pharmacology, 2018, 158, 298-304.	2.0	18
21	Phosphonamidate Prodrugs of a Butyrophilin Ligand Display Plasma Stability and Potent VÎ ³ 9 VÎ ² T Cell Stimulation. Journal of Medicinal Chemistry, 2018, 61, 8658-8669.	2.9	32
22	Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism. Journal of Medicinal Chemistry, 2017, 60, 2373-2382.	2.9	28
23	Geranylgeranyl diphosphate synthase inhibition induces apoptosis that is dependent upon GGPP depletion, ERK phosphorylation and caspase activation. Cell Death and Disease, 2017, 8, e2678-e2678.	2.7	15
24	The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB Journal, 2017, 31, 4697-4706.	0.2	41
25	Mixed Aryl Phosphonate Prodrugs of a Butyrophilin Ligand. ACS Medicinal Chemistry Letters, 2017, 8, 914-918.	1.3	38
26	Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget, 2017, 8, 76085-76098.	0.8	17
27	Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis. Pharmacological Research, 2016, 113, 438-448.	3.1	17
28	Synthesis and biological evaluation of santacruzamate A analogues for anti-proliferative and immunomodulatory activity. Bioorganic and Medicinal Chemistry, 2016, 24, 5183-5196.	1.4	15
29	Evaluation of a 7â€Methoxycoumarinâ€3â€carboxylic Acid Ester Derivative as a Fluorescent, Cellâ€Cleavable, Phosphonate Protecting Group. ChemBioChem, 2016, 17, 52-55.	1.3	13
30	Molecular mechanisms linking geranylgeranyl diphosphate synthase to cell survival and proliferation. Molecular Membrane Biology, 2016, 33, 1-11.	2.0	18
31	HMBPP Analog Prodrugs Bypass Energy-Dependent Uptake To Promote Efficient BTN3A1-Mediated Malignant Cell Lysis by Vγ9Vδ2 T Lymphocyte Effectors. Journal of Immunology, 2016, 197, 419-428.	0.4	33
32	Synthesis and Biological Evaluation of a Phosphonate Phosphoantigen Prodrug. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 751-753.	0.8	1
33	Effects of Novel Tropolones with Selective HDAC Inhibitor Activity in Myeloma Cells. Blood, 2015, 126, 3247-3247.	0.6	0
34	Prodrugs of Phosphonates and Phosphates: Crossing the Membrane Barrier. Topics in Current Chemistry, 2014, 360, 115-160.	4.0	135
35	Synthesis of a Phosphoantigen Prodrug that Potently Activates VÎ ³ 9Vδ2 T-Lymphocytes. Chemistry and Biology, 2014, 21, 945-954.	6.2	86
36	Opportunities and challenges in development of phosphoantigens as VÎ ³ 9VÎ ² T cell agonists. Biochemical Pharmacology, 2014, 89, 301-312.	2.0	26

#	Article	IF	Citations
37	Cyclopropene Cycloadditions with Annulated Furans: Total Synthesis of $(+)$ - and (\hat{a}^2) -Frondosin B and $(+)$ -Frondosin A. Journal of the American Chemical Society, 2014, 136, 4309-4315.	6.6	55
38	The focal adhesion kinase inhibitor PF-562,271 impairs primary CD4+ T cell activation. Biochemical Pharmacology, 2013, 86, 770-781.	2.0	18
39	Geranylgeranyl Diphosphate Synthase: An Emerging Therapeutic Target. Clinical Pharmacology and Therapeutics, 2011, 90, 804-812.	2.3	64
40	A Live Imaging Cell Motility Screen Identifies Prostaglandin E2 as a T Cell Stop Signal Antagonist. Journal of Immunology, 2011, 187, 3663-3670.	0.4	35
41	Contact-Dependent T Cell Activation and T Cell Stopping Require Talin1. Journal of Immunology, 2011, 187, 6256-6267.	0.4	91
42	Live Imaging of LFA-1-Dependent T-Cell Motility and Stop Signals. Methods in Molecular Biology, 2011, 757, 191-204.	0.4	2
43	Calpain inhibition impairs TNF-α-mediated neutrophil adhesion, arrest and oxidative burst. Molecular Immunology, 2010, 47, 894-902.	1.0	27
44	Isoprenoid Metabolism as a Therapeutic Target in Gram-Negative Pathogens. Current Topics in Medicinal Chemistry, 2010, 10, 1858-1871.	1.0	27
45	The Intermediate Enzymes of Isoprenoid Metabolism as Anticancer Targets. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 526-542.	0.9	60
46	Mono- and dialkyl isoprenoid bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 390-399.	1.4	41
47	Pivaloyloxymethyl-modified isoprenoid bisphosphonates display enhanced inhibition of cellular geranylgeranylation. Bioorganic and Medicinal Chemistry, 2008, 16, 3652-3660.	1.4	50
48	Quantitative determination of farnesyl and geranylgeranyl diphosphate levels in mammalian tissue. Analytical Biochemistry, 2008, 378, 138-143.	1.1	41
49	Inhibition of Geranylgeranyl Diphosphate Synthase Induces Apoptosis through Multiple Mechanisms and Displays Synergy with Inhibition of Other Isoprenoid Biosynthetic Enzymes. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1028-1036.	1.3	45
50	Digeranyl bisphosphonate inhibits geranylgeranyl pyrophosphate synthase. Biochemical and Biophysical Research Communications, 2007, 353, 921-925.	1.0	69
51	Synthesis of fluorescently tagged isoprenoid bisphosphonates that inhibit protein geranylgeranylation. Bioorganic and Medicinal Chemistry, 2007, 15, 1959-1966.	1.4	28
52	Total synthesis of (R,R,R)- and (S,S,S)-schweinfurthin F: Differences of bioactivity in the enantiomeric series. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 911-915.	1.0	43
53	Synthesis and biological activity of isoprenoid bisphosphonates. Bioorganic and Medicinal Chemistry, 2006, 14, 4130-4136.	1.4	69
54	Synergism between Anti-Leukemia Therapeutics and Isoprenoid Pathway Inhibitors in K562 Leukemia Cells Blood, 2006, 108, 4815-4815.	0.6	0

Andrew J Wiemer

#	Article	IF	CITATIONS
55	Synthesis and Activity of Fluorescent Isoprenoid Pyrophosphate Analogues. Journal of Organic Chemistry, 2004, 69, 8186-8193.	1.7	28
56	Bisphosphonates Influence Isoprenylation of Small Gtpases in Human Myeloma Cells Blood, 2004, 104, 3401-3401.	0.6	0
57	Stereoselective Synthesis of the 5â€~-Hydroxy-5â€~-phosphonate Derivatives of Cytidine and Cytosine Arabinoside. Journal of Organic Chemistry, 2002, 67, 9331-9339.	1.7	36
58	Phosphonate Analogues of Cytosine Arabinoside Monophosphate. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1783-1786.	0.8	4
59	Synthesis of phosphonate derivatives of uridine, cytidine, and cytosine arabinoside. Bioorganic and Medicinal Chemistry, 2000, 8, 2501-2509.	1.4	31