Svetlana A Gudkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846004/publications.pdf

Version: 2024-02-01

236925 223800 2,180 55 25 citations h-index papers

g-index 59 59 59 1709 docs citations times ranked citing authors all docs

46

#	Article	IF	CITATIONS
1	A-Site Cation Size Effect on Structure and Magnetic Properties of Sm(Eu,Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 High-Entropy Solid Solutions. Nanomaterials, 2022, 12, 36.	4.1	15
2	New high-entropy oxide phases with the perovskite structure. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012060.	0.6	1
3	Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials, 2021, 11, 1014.	4.1	24
4	New high-entropy oxide phases with the magnetoplumbite structure. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012062.	0.6	1
5	Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. Journal of Materials Chemistry C, 2021, 9, 5425-5436.	5 . 5	101
6	Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12â^xTixO19. Journal of Magnetism and Magnetic Materials, 2020, 498, 166117.	2.3	53
7	The new extremely substituted high entropy (Ba,Sr,Ca,La)Fe6-x(Al,Ti,Cr,Ga,In,Cu,W)xO19 microcrystals with magnetoplumbite structure. Ceramics International, 2020, 46, 9656-9660.	4.8	24
8	Terahertz-infrared spectroscopy of Ti4+-doped M-type barium hexaferrite. Journal of Alloys and Compounds, 2020, 820, 153398.	5 . 5	15
9	Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites. Journal of Magnetism and Magnetic Materials, 2020, 498, 166190.	2.3	80
10	The Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2D Nanostructured Au/NiFe System. Nanomaterials, 2020, 10, 1077.	4.1	72
11	Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites. Journal of the European Ceramic Society, 2020, 40, 4022-4028.	5.7	52
12	High Entropy Oxide Phases with Perovskite Structure. Nanomaterials, 2020, 10, 268.	4.1	41
13	Sub-lattice of Jahn-Teller centers in hexaferrite crystal. Scientific Reports, 2020, 10, 7076.	3.3	24
14	Influence of chemical substitution on broadband dielectric response of barium-lead M-type hexaferrite. New Journal of Physics, 2019, 21, 063016.	2.9	23
15	Extremely Polysubstituted Magnetic Material Based on Magnetoplumbite with a Hexagonal Structure: Synthesis, Structure, Properties, Prospects. Nanomaterials, 2019, 9, 559.	4.1	22
16	High-entropy oxide phases with magnetoplumbite structure. Ceramics International, 2019, 45, 12942-12948.	4.8	64
17	Preparation and investigation of the magnetoelectric properties in layered cermet structures. Ceramics International, 2019, 45, 13030-13036.	4.8	16
18	Terahertz-infrared spectroscopy of single crystalline m-type hexaferrite BaTi _x Fe _{12-x} O ₁₉ . Journal of Physics: Conference Series, 2019, 1389, 012038.	0.4	0

#	Article	IF	CITATIONS
19	Synthesis, structure and properties of barium and barium lead hexaferrite. Journal of Magnetism and Magnetic Materials, 2019, 470, 101-104.	2.3	9
20	Flux single crystal growth of M-type strontium hexaferrite SrFe12O19 by spontaneous crystallization. Journal of Magnetism and Magnetic Materials, 2019, 470, 97-100.	2.3	20
21	Magnetic and dipole moments in indium doped barium hexaferrites. Journal of Magnetism and Magnetic Materials, 2018, 457, 83-96.	2.3	113
22	Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths. Journal of Alloys and Compounds, 2018, 755, 177-183.	5.5	105
23	Anomalies in Ni-Fe nanogranular films growth. Journal of Alloys and Compounds, 2018, 748, 970-978.	5.5	93
24	Polarization origin and iron positions in indium doped barium hexaferrites. Ceramics International, 2018, 44, 290-300.	4.8	240
25	Morphology and magnetic properties of pressed barium hexaferrite BaFe12O19 materials. Journal of Magnetism and Magnetic Materials, 2018, 459, 131-135.	2.3	18
26	Polar soft mode in titanium-doped single crystalline BaFe12- <inf>x</inf> Ti <inf>x</inf> 0 <inf>19</inf> M-type hexaferrite. , 2018, , .		1
27	Bi-relaxor behavior and Fe ²⁺ fine structure in single crystalline Ba<inf>0.3</inf>Pb<inf>O</inf>.<inf>7</inf>Fe<inf>12</inf>O<inf>hexaferrite., 2018,,.	.gt;19 </td <td>inf>M-typ</td>	inf>M-typ
28	Terahertz-infrared electrodynamics of lead-doped single crystalline Bal- <inf>x</inf> Pb <inf>x</inf> Fel2019 M-type hexagonal ferrite., 2018,,.		4
29	Measurement of permittivity and permeability of barium hexaferrite. Journal of Magnetism and Magnetic Materials, 2018, 465, 290-294.	2.3	72
30	Magnetotransport properties and phase separation in iron substituted lanthanum-calcium manganite. Materials Research Express, 2018, 5, 086108.	1.6	13
31	Temperature evolution of the structure parameters and exchange interactions in BaFe12â^'xlnxO19. Journal of Magnetism and Magnetic Materials, 2018, 466, 393-405.	2.3	98
32	Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1 (BaTiO3) bicomponent ceramics. Ceramics International, 2018, 44, 21295-21302.	4.8	130
33	Three Oxidation States of Manganese in the Barium Hexaferrite BaFe _{12–<i>x</i>} Mn _{<i>x</i>} O ₁₉ . Inorganic Chemistry, 2017, 56, 3861-3866.	4.0	57
34	Investigation of Barium Hexaferrite BaFe ₁₂ O ₁₉ Electro Physical Parameters Using Open-Ended Coaxial Probe Method. Solid State Phenomena, 2017, 265, 834-838.	0.3	2
35	Millimeter-wave characterization of aluminum substituted barium lead hexaferrite single crystals grown from PbO–B2O3 flux. Ceramics International, 2017, 43, 15800-15804.	4.8	18
36	Magnetic and Structural Properties of Barium Hexaferrite BaFe12O19 from Various Growth Techniques. Materials, 2017, 10, 578.	2.9	41

#	Article	IF	Citations
37	Millimetre-wave isolator based on Al substituted Ba ferrite. Journal of Physics: Conference Series, 2016, 769, 012091.	0.4	1
38	Broadband impedance spectroscopic characterization of PbTiO3 crystal grown by spontaneous crystallization from molten oxides. Ceramics International, 2016, 42, 10787-10792.	4.8	12
39	Barium Hexaferrite Single Crystal Growth Using PbO and Na ₂ O Based Flux. Materials Science Forum, 2016, 870, 66-69.	0.3	1
40	Flux Crystal Growth and the Electronic Structure of BaFe ₁₂ O ₁₉ Hexaferrite. Journal of Physical Chemistry C, 2016, 120, 5114-5123.	3.1	96
41	Growth of Lead and Aluminum Substituted Barium Hexaferrite Single Crystals from Lead Oxide Flux. Materials Science Forum, 2016, 843, 3-9.	0.3	13
42	Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexaferrite single crystals. Journal of Alloys and Compounds, 2015, 628, 480-484.	5.5	68
43	Tungsten substituted BaFe12O19 single crystal growth and characterization. Materials Chemistry and Physics, 2015, 155, 99-103.	4.0	26
44	Growth, structural and magnetic characterization of Zn-substituted barium hexaferrite single crystals. Materials Chemistry and Physics, 2015, 163, 416-420.	4.0	40
45	Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals. Ceramics International, 2015, 41, 12728-12733.	4.8	39
46	Cu-substituted barium hexaferrite crystal growth and characterization. Ceramics International, 2015, 41, 9172-9176.	4.8	36
47	Correlation between bioactivity and structural properties of titanium dioxide coatings grown by atomic layer deposition. Applied Surface Science, 2012, 258, 3415-3419.	6.1	35
48	Electrical properties of quaternary HfAlTiO thin films grown by atomic layer deposition. Thin Solid Films, 2012, 520, 4547-4550.	1.8	7
49	Structural and electrical properties of TixAl1â^'xOy thin films grown by atomic layer deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 01A302.	1.2	20
50	Influence of synchrotron radiation on morphological features of a polymethylmetacrilate thin film. Journal of Surface Investigation, 2010, 4, 572-575.	0.5	0
51	Synthesis of biocompatible surfaces by nanotechnology methods. Nanotechnologies in Russia, 2010, 5, 696-708.	0.7	42
52	Structural properties of the titanium dioxide thin films grown by atomic layer deposition at various numbers of reaction cycles. Applied Surface Science, 2010, 257, 186-191.	6.1	33
53	Single Silicon Field Emitter with High Aspect Ratio. , 2006, , .		0
54	The Thermal Expansion of Solid State BaFe ₁₂ O ₁₉ and Flux Ba _{0.8} Pb _{0.2} Fe ₁₂ O _{19<td>gtp.3</td><td>1</td>}	gtp.3	1

#	Article	IF	CITATIONS
55	Powder Diffraction and Dilatometric Study of SrFe ₁₂ O ₁₉ . Materials Science Forum, 0, 946, 336-340.	0.3	O