
Robert J A Goode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3845982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. FEBS Journal, 2021, 288, 507-529.	4.7	25
2	Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. Nature Communications, 2021, 12, 2511.	12.8	53
3	LFQ-Analyst: An Easy-To-Use Interactive Web Platform To Analyze and Visualize Label-Free Proteomics Data Preprocessed with MaxQuant. Journal of Proteome Research, 2020, 19, 204-211.	3.7	120
4	Exploring the Tetracyclization of Teicoplanin Precursor Peptides through Chemoenzymatic Synthesis. Journal of Organic Chemistry, 2020, 85, 1537-1547.	3.2	18
5	Exploring modular reengineering strategies to redesign the teicoplanin non-ribosomal peptide synthetase. Chemical Science, 2020, 11, 9443-9458.	7.4	19
6	Redesign of Substrate Selection in Glycopeptide Antibiotic Biosynthesis Enables Effective Formation of Alternate Peptide Backbones. ACS Chemical Biology, 2020, 15, 2444-2455.	3.4	9
7	A Chemoenzymatic Approach to the Synthesis of Glycopeptide Antibiotic Analogues. Angewandte Chemie, 2020, 132, 10991-10995.	2.0	4
8	A Chemoenzymatic Approach to the Synthesis of Glycopeptide Antibiotic Analogues. Angewandte Chemie - International Edition, 2020, 59, 10899-10903.	13.8	25
9	Enzymatic Cascade To Evaluate the Tricyclization of Glycopeptide Antibiotic Precursor Peptides as a Prequel to Biosynthetic Redesign. Organic Letters, 2019, 21, 8635-8640.	4.6	20
10	A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics. Chemical Science, 2019, 10, 9466-9482.	7.4	44
11	Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nature Communications, 2019, 10, 2613.	12.8	48
12	The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis. ACS Chemical Biology, 2019, 14, 2932-2941.	3.4	15
13	Proteomic Identification of Interferon-Induced Proteins with Tetratricopeptide Repeats as Markers of M1 Macrophage Polarization. Journal of Proteome Research, 2018, 17, 1485-1499.	3.7	35
14	Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells. Molecular and Cellular Proteomics, 2018, 17, 1170-1183.	3.8	13
15	Chlorinated Glycopeptide Antibiotic Peptide Precursors Improve Cytochrome P450-Catalyzed Cyclization Cascade Efficiency. Biochemistry, 2017, 56, 1239-1247.	2.5	26
16	Structural basis for substrate selection by the translocation and assembly module of the βâ€barrel assembly machinery. Molecular Microbiology, 2017, 106, 142-156.	2.5	29
17	Halogenation of glycopeptide antibiotics occurs at the amino acid level during non-ribosomal peptide synthesis. Chemical Science, 2017, 8, 5992-6004.	7.4	48
18	Neurotoxicity in Sri Lankan Russell's Viper (Daboia russelii) Envenoming is Primarily due to U1-viperitoxin-Dr1a, a Pre-Synaptic Neurotoxin. Neurotoxicity Research, 2017, 31, 11-19.	2.7	43

Robert J A Goode

#	Article	IF	CITATIONS
19	Structure of the poly-C9 component of the complement membrane attack complex. Nature Communications, 2016, 7, 10588.	12.8	112
20	Changes in protein abundance are observed in bacterial isolates from a natural host. Frontiers in Cellular and Infection Microbiology, 2015, 5, 71.	3.9	6
21	Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 3415-3431.	3.7	53
22	Fetuin B Is a Secreted Hepatocyte Factor Linking Steatosis to Impaired Glucose Metabolism. Cell Metabolism, 2015, 22, 1078-1089.	16.2	192
23	Chromosome 7-Centric Analysis of Proteomics Data from a Panel of Human Colon Carcinoma Cell Lines. Journal of Proteome Research, 2013, 12, 89-96.	3.7	6
24	The Proteome Browser Web Portal. Journal of Proteome Research, 2013, 12, 172-178.	3.7	27
25	Particles on the Move: Intracellular Trafficking and Asymmetric Mitotic Partitioning of Nanoporous Polymer Particles. ACS Nano, 2013, 7, 5558-5567.	14.6	33
26	Solubilisation of the armadilloâ€repeat protein βâ€catenin using a zwitterionic detergent allows resolution of phosphorylated forms by 2DE. Electrophoresis, 2012, 33, 1804-1813.	2.4	2
27	Tandem application of cationic colloidal silica and Triton Xâ€114 for plasma membrane protein isolation and purification: Towards developing an MDCK protein database. Proteomics, 2011, 11, 1238-1253.	2.2	12
28	Proteomic profiling of secretome and adherent plasma membranes from distinct mammary epithelial cell subpopulations. Proteomics, 2011, 11, 4029-4039.	2.2	25
29	Purification of Basolateral Integral Membrane Proteins by Cationic Colloidal Silica-Based Apical Membrane Subtraction. Methods in Molecular Biology, 2009, 528, 177-187.	0.9	8
30	Stem cell markers: Insights from membrane proteomics?. Proteomics, 2008, 8, 4946-4957.	2.2	25
31	Handling membrane proteins. , 2005, , .		0