Olivia U Mason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3845340/publications.pdf

Version: 2024-02-01

		394421	345221
36	4,112	19	36
papers	citations	h-index	g-index
	_		
41	41	41	4304
all docs	docs citations	times ranked	citing authors

Ουνία Η Μάρον

#	Article	IF	CITATIONS
1	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	12.6	1,109
2	Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME Journal, 2012, 6, 1715-1727.	9.8	547
3	Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the <i>Deepwater Horizon</i> Oil Spill in the Gulf of Mexico. Environmental Science & Technology, 2013, 47, 10860-10867.	10.0	344
4	Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME Journal, 2014, 8, 1464-1475.	9.8	325
5	Deepâ€sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology, 2012, 14, 2405-2416.	3.8	275
6	Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal, 2012, 6, 451-460.	9.8	240
7	Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Frontiers in Microbiology, 2014, 5, 130.	3.5	172
8	First Investigation of the Microbiology of the Deepest Layer of Ocean Crust. PLoS ONE, 2010, 5, e15399.	2.5	142
9	Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME Journal, 2009, 3, 231-242.	9.8	137
10	Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Frontiers in Microbiology, 2014, 5, 332.	3.5	106
11	Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico "Dead Zone― MBio, 2017, 8, .	4.1	80
12	The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Frontiers in Microbiology, 2014, 5, 108.	3.5	76
13	The phylogeny of endolithic microbes associated with marine basalts. Environmental Microbiology, 2007, 9, 2539-2550.	3.8	74
14	Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania. Frontiers in Microbiology, 2014, 5, 522.	3.5	58
15	Archaeal enrichment in the hypoxic zone in the northern <scp>G</scp> ulf of <scp>M</scp> exico. Environmental Microbiology, 2015, 17, 3847-3856.	3.8	51
16	Mississippi River Plume Enriches Microbial Diversity in the Northern Gulf of Mexico. Frontiers in Microbiology, 2016, 7, 1048.	3.5	43
17	Comparison of Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments, Eel River Basin and Hydrate Ridge, USA. Microbial Ecology, 2015, 70, 766-784.	2.8	40
18	Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME Journal, 2019, 13, 1737-1749.	9.8	39

OLIVIA U MASON

#	Article	IF	CITATIONS
19	Methane and microbial dynamics in the Gulf of Mexico water column. Frontiers in Marine Science, 2015, 2, .	2.5	25
20	Deep Crustal Communities of the Juan de Fuca Ridge Are Governed by Mineralogy. Geomicrobiology Journal, 2017, 34, 147-156.	2.0	21
21	Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Applied and Environmental Microbiology, 2019, 85, .	3.1	20
22	Effects of a Ciliate Protozoa Predator on Microbial Communities in Pitcher Plant (Sarracenia) Tj ETQq0 0 0 rgBT	Overlock 2.5	10 Tf 50 622 ⁻
23	Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics, 2013, 13, 2776-2785.	2.2	18
24	Predator identity more than predator richness structures aquatic microbial assemblages in <i>Sarracenia purpurea</i> leaves. Ecology, 2018, 99, 652-660.	3.2	17
25	Elevated nutrient inputs to marshes differentially impact carbon and nitrogen cycling in two northern Gulf of Mexico saltmarsh plants. Biogeochemistry, 2020, 149, 1-16.	3.5	16
26	Extent of the annual Gulf of Mexico hypoxic zone influences microbial community structure. PLoS ONE, 2019, 14, e0209055.	2.5	15
27	Metagenomic Assembly and Prokaryotic Metagenome-Assembled Genome Sequences from the Northern Gulf of Mexico "Dead Zone― Microbiology Resource Announcements, 2018, 7, .	0.6	14
28	Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation, 2020, 31, 171-182.	3.0	14
29	Host and environmental determinants of microbial community structure in the marine phyllosphere. PLoS ONE, 2020, 15, e0235441.	2.5	12
30	Enrichment of potential pathogens in marine microbiomes with different degrees of anthropogenic activity. Environmental Pollution, 2021, 268, 115757.	7.5	12
31	New Insights Into the Influence of Plant and Microbial Diversity on Denitrification Rates in a Salt Marsh. Wetlands, 2021, 41, 1.	1.5	12
32	Composition of seagrass phyllosphere microbial communities suggests rapid environmental regulation of community structure. FEMS Microbiology Ecology, 2021, 97, .	2.7	11
33	Ditching Nutrients: Roadside Drainage Networks are Hotspots for Microbial Nitrogen Removal. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006115.	3.0	9
34	Metagenomic analysis of microbial communities across a transect from low to highly hydrocarbonâ€contaminated soils in King George Island, Maritime Antarctica. Geobiology, 2022, 20, 98-111.	2.4	9
35	Environmental stressors alter the composition of seagrass phyllosphere microbial communities. Climate Change Ecology, 2021, 2, 100042.	1.9	4
36	Marine microbiology: Community clean up. Nature Microbiology, 2016, 1, 16102.	13.3	1