Yuan-Chao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/384511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	6.0	492
2	Transcriptional Programming and Functional Interactions within the <i>Phytophthora sojae</i> RXLR Effector Repertoire Â. Plant Cell, 2011, 23, 2064-2086.	3.1	455
3	A <i>Phytophthora sojae</i> Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell, 2015, 27, 2057-2072.	3.1	335
4	Conserved C-Terminal Motifs Required for Avirulence and Suppression of Cell Death by <i>Phytophthora sojae effector</i> Avr1b. Plant Cell, 2008, 20, 1118-1133.	3.1	323
5	The bZIP Transcription Factor MoAP1 Mediates the Oxidative Stress Response and Is Critical for Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1001302.	2.1	266
6	In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Research, 2015, 74, 100-109.	5.3	246
7	Oomycete pathogens encode RNA silencing suppressors. Nature Genetics, 2013, 45, 330-333.	9.4	238
8	A paralogous decoy protects <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a host inhibitor. Science, 2017, 355, 710-714.	6.0	236
9	Phytomelatonin: a universal abiotic stress regulator. Journal of Experimental Botany, 2018, 69, 963-974.	2.4	211
10	Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 2009, 84, 341-347.	1.7	171
11	Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity. PLoS Pathogens, 2011, 7, e1002353.	2.1	169
12	The Basic Leucine Zipper Transcription Factor Moatf1 Mediates Oxidative Stress Responses and Is Necessary for Full Virulence of the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1053-1068.	1.4	156
13	Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a. PLoS ONE, 2009, 4, e5066.	1.1	151
14	The RxLR effector Avh241 from <i>Phytophthora sojae</i> requires plasma membrane localization to induce plant cell death. New Phytologist, 2012, 196, 247-260.	3.5	151
15	Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution. PLoS Pathogens, 2015, 11, e1004801.	2.1	148
16	Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications, 2018, 9, 594.	5.8	142
17	Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 2022, 20, 449-464.	13.6	129
18	Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annual Review of Microbiology, 2019, 73, 667-696.	2.9	123

#	Article	IF	CITATIONS
19	Roles of small <scp>RNA</scp> s in soybean defense against <i><scp>P</scp>hytophthora sojae</i> infection. Plant Journal, 2014, 79, 928-940.	2.8	122
20	A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Current Biology, 2017, 27, 981-991.	1.8	120
21	Digital Gene Expression Profiling of the <i>Phytophthora sojae</i> Transcriptome. Molecular Plant-Microbe Interactions, 2011, 24, 1530-1539.	1.4	119
22	A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nature Communications, 2016, 7, 11685.	5.8	119
23	The Phytophthora sojae Avirulence Locus Avr3c Encodes a Multi-Copy RXLR Effector with Sequence Polymorphisms among Pathogen Strains. PLoS ONE, 2009, 4, e5556.	1.1	116
24	BIODIVERSITY RESEARCH: Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 2010, 16, 862-873.	1.9	113
25	Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chemistry, 2017, 221, 1642-1649.	4.2	112
26	The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. Journal of Experimental Botany, 2017, 68, 2991-3005.	2.4	111
27	<i>MgCRZ1</i> , a transcription factor of <i>Magnaporthe grisea</i> , controls growth, development and is involved in full virulence. FEMS Microbiology Letters, 2009, 293, 160-169.	0.7	102
28	The NLP Toxin Family in <i>Phytophthora sojae</i> Includes Rapidly Evolving Groups That Lack Necrosis-Inducing Activity. Molecular Plant-Microbe Interactions, 2012, 25, 896-909.	1.4	101
29	<i>Phytophthora</i> Suppressor of RNA Silencing 2 Is a Conserved RxLR Effector that Promotes Infection in Soybean and <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2014, 27, 1379-1389.	1.4	101
30	Molecular detection ofFusarium oxysporumf. sp.niveumandMycosphaerella melonisin infected plant tissues and soil. FEMS Microbiology Letters, 2005, 249, 39-47.	0.7	100
31	Two Host Cytoplasmic Effectors Are Required for Pathogenesis of <i>Phytophthora sojae</i> by Suppression of Host Defenses Â. Plant Physiology, 2011, 155, 490-501.	2.3	100
32	A <i>Phytophthora sojae</i> G-Protein α Subunit Is Involved in Chemotaxis to Soybean Isoflavones. Eukaryotic Cell, 2008, 7, 2133-2140.	3.4	95
33	Reference values for peripheral blood lymphocyte subsets of healthy children in China. Journal of Allergy and Clinical Immunology, 2018, 142, 970-973.e8.	1.5	93
34	An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters. PLoS Pathogens, 2015, 11, e1005348.	2.1	89
35	The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. Journal of Experimental Botany, 2009, 60, 3109-3122.	2.4	88
36	An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications, 2017, 8, 2051.	5.8	84

#	Article	IF	CITATIONS
37	Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiology Letters, 2012, 334, 27-34.	0.7	83
38	Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean. PLoS ONE, 2011, 6, e20172.	1.1	76
39	Characterization and mapping of <i>RpsYu25</i> , a novel resistance gene to <i>Phytophthora sojae</i> . Plant Breeding, 2011, 130, 139-143.	1.0	74
40	Two RxLR Avirulence Genes in <i>Phytophthora sojae</i> Determine Soybean <i>Rps</i> 1k-Mediated Disease Resistance. Molecular Plant-Microbe Interactions, 2013, 26, 711-720.	1.4	73
41	Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a <i>Phytophthora</i> Species With Downy Mildew-Like Characteristics. Molecular Plant-Microbe Interactions, 2016, 29, 573-583.	1.4	73
42	Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. Molecular Plant-Microbe Interactions, 2018, 31, 6-12.	1.4	71
43	Distinct regions of the <i>Phytophthora</i> essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytologist, 2017, 214, 361-375.	3.5	67
44	The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. PLoS Pathogens, 2015, 11, e1005139.	2.1	66
45	Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants. Plant Communications, 2020, 1, 100085.	3.6	64
46	The <i>Phytophthora sojae </i> <scp>RXLR</scp> effector Avh238 destabilizes soybean Type2 Gm <scp>ACS</scp> s to suppress ethylene biosynthesis and promote infection. New Phytologist, 2019, 222, 425-437.	3.5	63
47	Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biology, 2018, 19, 181.	3.8	61
48	Phytophthora sojae Effector PsAvh240 Inhibits Host Aspartic Protease Secretion to Promote Infection. Molecular Plant, 2019, 12, 552-564.	3.9	60
49	A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. ELife, 2018, 7, .	2.8	60
50	Microarray profiling reveals microRNAs involving soybean resistance to <i>Phytophthora sojae</i> . Genome, 2011, 54, 954-958.	0.9	56
51	Rapid and Sensitive Detection of Phytophthora sojae in Soil and Infected Soybeans by Species-Specific Polymerase Chain Reaction Assays. Phytopathology, 2006, 96, 1315-1321.	1.1	55
52	The Type III Effector AvrBs2 in <i>Xanthomonas oryzae</i> pv. <i>oryzicola</i> Suppresses Rice Immunity and Promotes Disease Development. Molecular Plant-Microbe Interactions, 2015, 28, 869-880.	1.4	54
53	Phytophthora sojae effectors orchestrate warfare with host immunity. Current Opinion in Microbiology, 2018, 46, 7-13.	2.3	54
54	Intracellular and Extracellular Phosphatidylinositol 3-Phosphate Produced by Phytophthora Species Is Important for Infection. Molecular Plant, 2013, 6, 1592-1604.	3.9	51

#	Article	IF	CITATIONS
55	N <i>-</i> glycosylation shields <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a specific host aspartic protease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27685-27693.	3.3	51
56	Distribution, Pathotypes, and Metalaxyl Sensitivity of Phytophthora sojae from Heilongjiang and Fujian Provinces in China. Plant Disease, 2010, 94, 881-884.	0.7	50
57	Genomeâ€wide identification of long nonâ€coding RNAs suggests a potential association with effector gene transcription in <i>Phytophthora sojae</i> . Molecular Plant Pathology, 2018, 19, 2177-2186.	2.0	49
58	Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. Molecular Plant, 2020, 13, 1470-1484.	3.9	49
59	Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Research, 2020, 48, 1790-1799.	6.5	47
60	What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions?. Molecular Plant-Microbe Interactions, 2020, 33, 1354-1365.	1.4	47
61	Fg12 ribonuclease secretion contributes to <i>Fusarium graminearum</i> virulence and induces plant cell death. Journal of Integrative Plant Biology, 2021, 63, 365-377.	4.1	47
62	Structural analysis of <i>Phytophthora</i> suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8054-8059.	3.3	46
63	Gene Duplication and Fragment Recombination Drive Functional Diversification of a Superfamily of Cytoplasmic Effectors in Phytophthora sojae. PLoS ONE, 2013, 8, e70036.	1.1	46
64	Molecular detection of Phytophthora capsici in infected plant tissues, soil and water. Plant Pathology, 2006, 55, 770-775.	1.2	45
65	PsSAK1, a Stress-Activated MAP Kinase of <i>Phytophthora sojae</i> , Is Required for Zoospore Viability and Infection of Soybean. Molecular Plant-Microbe Interactions, 2010, 23, 1022-1031.	1.4	45
66	The Phytophthora sojae Avr1d Gene Encodes an RxLR-dEER Effector with Presence and Absence Polymorphisms Among Pathogen Strains. Molecular Plant-Microbe Interactions, 2013, 26, 958-968.	1.4	43
67	Nudix Effectors: A Common Weapon in the Arsenal of Plant Pathogens. PLoS Pathogens, 2016, 12, e1005704.	2.1	43
68	The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microbial Pathogenesis, 2009, 47, 78-86.	1.3	40
69	Genome Re-Sequencing and Functional Analysis Places the Phytophthora sojae Avirulence Genes Avr1c and Avr1a in a Tandem Repeat at a Single Locus. PLoS ONE, 2014, 9, e89738.	1.1	39
70	The type III effector AvrXccB in <i>Xanthomonas campestris</i> pv. <i>campestris</i> targets putative methyltransferases and suppresses innate immunity in Arabidopsis. Molecular Plant Pathology, 2017, 18, 768-782.	2.0	39
71	Whole Genome Re-sequencing Reveals Natural Variation and Adaptive Evolution of Phytophthora sojae. Frontiers in Microbiology, 2019, 10, 2792.	1.5	39
72	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	3.3	39

#	Article	IF	CITATIONS
73	<pre><scp>PsMPK7</scp>, a stressâ€associated mitogenâ€activated protein kinase (<scp>MAPK</scp>) in <i><scp>P</scp>hytophthora sojae</i>, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean. Molecular Plant Pathology, 2015, 16, 61-70.</pre>	2.0	38
74	Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Applied Microbiology and Biotechnology, 2016, 100, 7193-7202.	1.7	38
75	Rapid Detection of Phytophthora nicotianae in Infected Tobacco Tissues and Soil Samples Based on Its Ypt1 Gene. Journal of Phytopathology, 2010, 158, 1-7.	0.5	37
76	Incidence of congenital hypothyroidism in China: data from the national newborn screening program, 2013–2015. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 601-608.	0.4	37
77	Natural allelic variations provide insights into host adaptation of <i>Phytophthora</i> avirulence effector PsAvr3c. New Phytologist, 2019, 221, 1010-1022.	3.5	37
78	PVA/CMC/PEDOT:PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112088.	2.5	37
79	Purification and immunocytolocalization of a novel Phytophthora boehmeriae protein inducing the hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiological and Molecular Plant Pathology, 2003, 63, 223-232.	1.3	36
80	Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMS Microbiology Letters, 2007, 269, 280-288.	0.7	36
81	Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in <i>Nicotiana benthamiana</i> . Plant, Cell and Environment, 2012, 35, 72-85.	2.8	36
82	Wheat Straw Return Influences Nitrogen-Cycling and Pathogen Associated Soil Microbiota in a Wheat–Soybean Rotation System. Frontiers in Microbiology, 2019, 10, 1811.	1.5	36
83	Chemotaxis and oospore formation in <i><scp>P</scp>hytophthora sojae</i> are controlled by <scp>G</scp> â€proteinâ€coupled receptors with a phosphatidylinositol phosphate kinase domain. Molecular Microbiology, 2013, 88, 382-394.	1.2	35
84	PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth, zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae. Fungal Genetics and Biology, 2014, 65, 14-24.	0.9	35
85	Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China. PeerJ, 2018, 6, e4713.	0.9	35
86	<i>Phytophthora sojae</i> effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
87	<scp>GK4</scp> , a <scp>G</scp> â€proteinâ€coupled receptor with a phosphatidylinositol phosphate kinase domain in <i><scp>P</scp>hytophthora infestans</i> , is involved in sporangia development and virulence. Molecular Microbiology, 2013, 88, 352-370.	1.2	34
88	A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development. PLoS ONE, 2012, 7, e40246.	1.1	33
89	Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments. Scientific Reports, 2017, 7, 12827.	1.6	33
90	The LCB ₂ subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Baxâ€induced cell death. New Phytologist, 2009, 181, 127-146.	3.5	32

#	Article	IF	CITATIONS
91	The heat shock transcription factor <scp>P</scp> s <scp>HSF</scp> 1 of <scp><i>P</i></scp> <i>hytophthora sojae</i> is required for oxidative stress tolerance and detoxifying the plant oxidative burst. Environmental Microbiology, 2015, 17, 1351-1364.	1.8	32
92	Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. Journal of Soils and Sediments, 2016, 16, 1858-1870.	1.5	31
93	In vitro and in vivo evaluation of the probiotic attributes of Lactobacillus kefiranofaciens XL10 isolated from Tibetan kefir grain. Applied Microbiology and Biotechnology, 2017, 101, 2467-2477.	1.7	31
94	The WY domain in the Phytophthora effector PSR 1 is required for infection and RNA silencing suppression activity. New Phytologist, 2019, 223, 839-852.	3.5	31
95	Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae. BMC Genomics, 2013, 14, 839.	1.2	30
96	An Effector, BxSapB1, Induces Cell Death and Contributes to Virulence in the Pine Wood Nematode <i>Bursaphelenchus xylophilus</i> . Molecular Plant-Microbe Interactions, 2019, 32, 452-463.	1.4	30
97	The role of SA in the hypersensitive response and systemic acquired resistance induced by elicitor PB90 from Phytophthora boehmeriae. Physiological and Molecular Plant Pathology, 2004, 65, 31-38.	1.3	29
98	Molecular mapping of two cultivar-specific avirulence genes in the rice blast fungus Magnaporthe grisea. Molecular Genetics and Genomics, 2007, 277, 139-148.	1.0	29
99	<scp>P</scp> s <scp>H</scp> int1, associated with the <scp>G</scp> â€protein α subunit <scp>PsGPA1</scp> , is required for the chemotaxis and pathogenicity of <i><scp>P</scp>hytophthora sojae</i> . Molecular Plant Pathology, 2016, 17, 272-285.	2.0	29
100	Physiological and metabolomic responses of bermudagrass (<scp><i>Cynodon dactylon</i></scp>) to alkali stress. Physiologia Plantarum, 2021, 171, 22-33.	2.6	29
101	Large chromosomal segment deletions by CRISPR/LbCpf1â€mediated multiplex gene editing in soybean. Journal of Integrative Plant Biology, 2021, 63, 1620-1631.	4.1	29
102	Genetic Diversity of Magnaporthe grisea in China as Revealed by DNA Fingerprint Haplotypes and Pathotypes. Journal of Phytopathology, 2006, 154, 361-369.	0.5	28
103	GPR11, a Putative Seven-Transmembrane G Protein-Coupled Receptor, Controls Zoospore Development and Virulence of Phytophthora sojae. Eukaryotic Cell, 2010, 9, 242-250.	3.4	28
104	Complete Genome Sequence of Lactobacillus kefiranofaciens ZW3. Journal of Bacteriology, 2011, 193, 4280-4281.	1.0	28
105	A Puf RNA-binding protein encoding gene PlM90 regulates the sexual and asexual life stages of the litchi downy blight pathogen Peronophythora litchii. Fungal Genetics and Biology, 2017, 98, 39-45.	0.9	28
106	Genome-wide identification of Phytophthora sojae SNARE genes and functional characterization of the conserved SNARE PsYKT6. Fungal Genetics and Biology, 2011, 48, 241-251.	0.9	27
107	The MADS-box Transcription Factor PsMAD1 Is Involved in Zoosporogenesis and Pathogenesis of Phytophthora sojae. Frontiers in Microbiology, 2018, 9, 2259.	1.5	26
108	Use of GFP to trace the colonization of Lactococcus lactis WH-C1 in the gastrointestinal tract of mice. Journal of Microbiological Methods, 2011, 86, 390-392.	0.7	25

#	Article	IF	CITATIONS
109	Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of <i>Phytophthora capsici</i> and <i>Phytophthora sojae</i> . Environmental Microbiology, 2019, 21, 4537-4547.	1.8	25
110	Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene, 2021, 764, 145082.	1.0	25
111	The N-terminus of an Ustilaginoidea virens Ser-Thr-rich glycosylphosphatidylinositol-anchored protein elicits plant immunity as a MAMP. Nature Communications, 2021, 12, 2451.	5.8	25
112	A CRISPR/Cas9â€mediated in situ complementation method for <i>Phytophthora sojae</i> mutants. Molecular Plant Pathology, 2021, 22, 373-381.	2.0	25
113	Development of a PCR Assay for the Molecular Detection of Phytophthora boehmeriae in Infected Cotton. Journal of Phytopathology, 2005, 153, 291-296.	0.5	24
114	Phytophthora sojae effector Avh331 suppresses the plant defence response by disturbing the MAPK signalling pathway. Physiological and Molecular Plant Pathology, 2012, 77, 1-9.	1.3	24
115	Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. New Phytologist, 2021, 229, 3424-3439.	3.5	24
116	A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nature Communications, 2021, 12, 5479.	5.8	24
117	Fine particulate matter air pollution and under-5 children mortality in China: A national time-stratified case-crossover study. Environment International, 2022, 159, 107022.	4.8	24
118	Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods, 2022, 11, 754.	1.9	24
119	Analysis of polymorphism and transcription of the effector gene <i>Avr1b</i> in <i>Phytophthora sojae</i> isolates from China virulent to <i>Rps1b</i> . Molecular Plant Pathology, 2012, 13, 114-122.	2.0	23
120	Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiology and Biochemistry, 2017, 117, 1-11.	2.8	23
121	Conductive core-sheath calcium alginate/graphene composite fibers with polymeric ionic liquids as an intermediate. Carbohydrate Polymers, 2019, 206, 328-335.	5.1	23
122	Rapid Diagnosis of Soybean Seedling Blight Caused by <i>Rhizoctonia solani</i> and Soybean Charcoal Rot Caused by <i>Macrophomina phaseolina</i> Using LAMP Assays. Phytopathology, 2015, 105, 1612-1617.	1.1	21
123	Rapid diagnosis of soybean anthracnose caused by Colletotrichum truncatum using a loop-mediated isothermal amplification (LAMP) assay. European Journal of Plant Pathology, 2017, 148, 785-793.	0.8	21
124	Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest. Plant and Soil, 2017, 421, 7-17.	1.8	21
125	Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in non-heading Chinese cabbage. Physiological and Molecular Plant Pathology, 2005, 67, 220-230.	1.3	20
126	Comparative Genomic Analysis among Four Representative Isolates of Phytophthora sojae Reveals Genes under Evolutionary Selection. Frontiers in Microbiology, 2016, 7, 1547.	1.5	20

#	Article	IF	CITATIONS
127	Root order-dependent seasonal dynamics in the carbon and nitrogen chemistry of poplar fine roots. New Forests, 2017, 48, 587-607.	0.7	20
128	Characterization of intronic structures and alternative splicing in Phytophthora sojae by comparative analysis of expressed sequence tags and genomic sequences. Canadian Journal of Microbiology, 2011, 57, 84-90.	0.8	19
129	Transient silencing mediated by in vitro synthesized double-stranded RNA indicates that PsCdc14 is required for sporangial development in a soybean root rot pathogen. Science China Life Sciences, 2011, 54, 1143-1150.	2.3	19
130	Development of a Loopâ€Mediated Isothermal Amplification Assay to Detect <i><scp>F</scp>usarium oxysporum</i> . Journal of Phytopathology, 2015, 163, 63-66.	0.5	19
131	Surface functionalization of cellulose nanocrystals with polymeric ionic liquids during phase transfer. Carbohydrate Polymers, 2017, 157, 1426-1433.	5.1	19
132	First Report of Root Rot Caused by <i>Phytophthora sansomeana</i> on Soybean in China. Plant Disease, 2010, 94, 378-378.	0.7	19
133	Differences in the induction of the oxidative burst in compatible and incompatible interactions of soybean and Phytophthora sojae. Physiological and Molecular Plant Pathology, 2008, 73, 16-24.	1.3	18
134	Under-5-Years Child Mortality Due to Congenital Anomalies. American Journal of Preventive Medicine, 2016, 50, 663-671.	1.6	18
135	Flexible cellulose/polyvinyl alcohol/PEDOT:PSS electrodes for ECG monitoring. Cellulose, 2021, 28, 4913-4926.	2.4	18
136	The Sex Ratio at Birth for 5,338,853 Deliveries in China from 2012 to 2015: A Facility-Based Study. PLoS ONE, 2016, 11, e0167575.	1.1	18
137	Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus × euramericana (Dode) Guinier.). Plant and Soil, 2017, 421, 123-135.	1.8	17
138	A new distinct geminivirus causes soybean stay-green disease. Molecular Plant, 2022, 15, 927-930.	3.9	17
139	Bioinformatics Analysis Reveals Abundant Short Alpha-Helices as a Common Structural Feature of Oomycete RxLR Effector Proteins. PLoS ONE, 2015, 10, e0135240.	1.1	16
140	Preparation, structure, and properties of melt spun cellulose acetate butyrate fibers. Textile Reseach Journal, 2018, 88, 1491-1504.	1.1	16
141	BxCDP1 from the pine wood nematode <i>Bursaphelenchus xylophilus</i> is recognized as a novel molecular pattern. Molecular Plant Pathology, 2020, 21, 923-935.	2.0	16
142	The <i>Phytophthora</i> effector Avh241 interacts with host NDR1â€ŀike proteins to manipulate plant immunity. Journal of Integrative Plant Biology, 2021, 63, 1382-1396.	4.1	16
143	Colonization and Gut Flora Modulation of Lactobacillus kefiranofaciens ZW3 in the Intestinal Tract of Mice. Probiotics and Antimicrobial Proteins, 2018, 10, 374-382.	1.9	16
144	Detection ofPhytophthora melonisin samples of soil, water, and plant tissue with polymerase chain reaction. Canadian Journal of Plant Pathology, 2007, 29, 172-181.	0.8	15

#	Article	IF	CITATIONS
145	Differential regulation of defense-related proteins in soybean during compatible and incompatible interactions between Phytophthora sojae and soybean by comparative proteomic analysis. Plant Cell Reports, 2015, 34, 1263-1280.	2.8	15
146	Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana. Plant Physiology and Biochemistry, 2020, 149, 121-131.	2.8	15
147	<i>Phytophthora sojae </i> apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiology, 2021, 187, 321-335.	2.3	15
148	Plant immunity inducers: from discovery to agricultural application. Stress Biology, 2022, 2, 1.	1.5	15
149	Jasmonic acid biosynthetic genes <i>TgLOX4</i> and <i>TgLOX5</i> are involved in daughter bulb development in tulip (<i>Tulipa gesneriana</i>). Horticulture Research, 2022, 9, .	2.9	15
150	Isolation, identification, and potential probiotic characterization of one Lactococcus from Kefir grain. Food Science and Biotechnology, 2015, 24, 1775-1780.	1.2	14
151	Pathogenicity and fungicide sensitivity of <i>Pythium</i> and <i>Phytopythium</i> spp. associated with soybean in the Huangâ€Huai region of China. Plant Pathology, 2020, 69, 1083-1092.	1.2	14
152	Differential screening reveals genes differentially expressed in low- and high-virulence near-isogenic Phytophthora sojae lines. Fungal Genetics and Biology, 2006, 43, 826-839.	0.9	13
153	Genetic analysis and molecular mapping of the avirulence gene PRE1, a gene for host-species specificity in the blast fungus Magnaporthe grisea. Genome, 2006, 49, 873-881.	0.9	13
154	Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen <i>Phytophthora agathidicida</i> . Molecular Plant Pathology, 2020, 21, 1131-1148.	2.0	13
155	G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae. PLoS Pathogens, 2020, 16, e1008138.	2.1	13
156	PsVPS1, a Dynamin-Related Protein, Is Involved in Cyst Germination and Soybean Infection of Phytophthora sojae. PLoS ONE, 2013, 8, e58623.	1.1	13
157	Specific interaction of an RNA-binding protein with the 3′-UTR of its target mRNA is critical to oomycete sexual reproduction. PLoS Pathogens, 2021, 17, e1010001.	2.1	13
158	Molecular Detection of <i>Colletotrichum lindemuthianum</i> by Duplex PCR. Journal of Phytopathology, 2008, 156, 431-437.	0.5	12
159	Linear polymeric ionic liquids as phase-transporters for both cationic and anionic dyes with synergic effects. Polymer Chemistry, 2015, 6, 7060-7068.	1.9	12
160	Plant Pathogens Utilize Effectors to Hijack the Host Endoplasmic Reticulum as Part of Their Infection Strategy. Engineering, 2020, 6, 500-504.	3.2	12
161	Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens. Plant Cell Reports, 2008, 27, 1559-1569.	2.8	11
162	The importin \hat{l}_{\pm} subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae. Fungal Genetics and Biology, 2015, 82, 108-115.	0.9	11

#	Article	IF	CITATIONS
163	Rapid diagnosis of wheat head blight caused by Fusarium asiaticum using a loop-mediated isothermal amplification assay. Australasian Plant Pathology, 2017, 46, 261-266.	0.5	11
164	Pythium cedri sp. nov. (Pythiaceae, Pythiales) from southern China based on morphological and molecular characters. Phytotaxa, 2017, 309, 135.	0.1	11
165	Conserved Subgroups of the Plant-Specific RWP-RK Transcription Factor Family Are Present in Oomycete Pathogens. Frontiers in Microbiology, 2020, 11, 1724.	1.5	11
166	<i>Phytophthora</i> infection signalsâ€induced translocation of NAC089 is required for endoplasmic reticulum stress responseâ€mediated plant immunity. Plant Journal, 2021, 108, 67-80.	2.8	11
167	Leaf surface microtopography shaping the bacterial community in the phyllosphere: evidence from 11 tree species. Microbiological Research, 2022, 254, 126897.	2.5	11
168	Phytophthora elicitor PB90 induced apoptosis in suspension cultures of tobacco. Science Bulletin, 2005, 50, 435-439.	1.7	10
169	Phytophthora sojae and soybean isoflavones, a model to study zoospore chemotaxis. Physiological and Molecular Plant Pathology, 2015, 92, 161-165.	1.3	10
170	Comparative physiological and metabolomic analyses reveal natural variations of tulip in response to storage temperatures. Planta, 2019, 249, 1379-1390.	1.6	10
171	A key effector, BxSapB2, plays a role in the pathogenicity of the pine wood nematode <i>Bursaphelenchus xylophilus</i> . Forest Pathology, 2020, 50, e12600.	0.5	10
172	Transcriptome Profiling of â€~ <i>Candidatus</i> Liberibacter asiaticus' in Citrus and Psyllids. Phytopathology, 2022, 112, 116-130.	1.1	10
173	Purification and partial characterization of milk-clotting enzyme extracted from glutinous rice wine mash liquor. Korean Journal of Chemical Engineering, 2009, 26, 1313-1318.	1.2	9
174	Functional and bioinformatics analysis of an exopolysaccharide-related gene (epsN) from Lactobacillus kefiranofaciens ZW3. Archives of Microbiology, 2016, 198, 611-618.	1.0	9
175	Focus on Effector-Triggered Susceptibility. Molecular Plant-Microbe Interactions, 2018, 31, 5-5.	1.4	9
176	Sensory characteristics of Maillard reaction products from chicken protein hydrolysates with different degrees of hydrolysis. CYTA - Journal of Food, 2019, 17, 221-227.	0.9	9
177	Synthesis and Properties of Thermotropic Poly(oxybenzoate-co-oxynaphthoate) Copolyester Modified by a Third AB Type Monomer. Journal of Macromolecular Science - Physics, 2020, 59, 197-212.	0.4	9
178	Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. Phytopathology, 2021, 111, 96-107.	1.1	9
179	Improved Whole-Genome Sequence of <i>Phytophthora capsici</i> Generated by Long-Read Sequencing. Molecular Plant-Microbe Interactions, 2021, 34, 866-869.	1.4	9
180	An atypical Phytophthora sojae RxLR effector manipulates host vesicle trafficking to promote infection. PLoS Pathogens, 2021, 17, e1010104.	2.1	9

#	Article	IF	CITATIONS
181	A survey of soybean germplasm for resistance to Phytophthora sojae. Euphytica, 2010, 176, 261-268.	0.6	8
182	Acid–base indicators for non-polar solvents via anion-exchange of polymeric ionic liquids with anionic dyes. Polymer Chemistry, 2015, 6, 8099-8104.	1.9	8
183	Polymorphism in natural alleles of the avirulence gene Avr1c is associated with the host adaptation of Phytophthora sojae. Phytopathology Research, 2019, 1, .	0.9	8
184	Research on the Risk Assessment of Qingdao Marine Disaster Based on Flooding. Sustainability, 2019, 11, 468.	1.6	8
185	Transcriptional variation analysis of Arabidopsis ecotypes in response to drought and salt stresses dissects commonly regulated networks. Physiologia Plantarum, 2021, 172, 77-90.	2.6	8
186	The bZIP transcription factor PsBZP32 is involved in cyst germination, oxidative stress response, and pathogenicity of Phytophthora sojae. Phytopathology Research, 2021, 3, .	0.9	8
187	Melatonin Antagonizes Cytokinin Responses to Stimulate Root Growth in Arabidopsis. Journal of Plant Growth Regulation, 2023, 42, 1833-1845.	2.8	8
188	G protein α subunit may help zoospore to find the infection site and influence the expression of RGS protein. Communicative and Integrative Biology, 2009, 2, 91-93.	0.6	7
189	Direct synthesis of potentially biodegradable aromatic–aliphatic thermotropic copolyesters with photocrosslinking properties. Liquid Crystals, 2019, 46, 1780-1789.	0.9	7
190	A LAMP-assay-based specific microbiota analysis reveals community dynamics and potential interactions of 13 major soybean root pathogens. Journal of Integrative Agriculture, 2020, 19, 2056-2063.	1.7	7
191	Rhizosphere bacterial and fungal communities succession patterns related to growth of poplar fine roots. Science of the Total Environment, 2021, 756, 143839.	3.9	7
192	Double-faced role of Bcl-2-associated athanogene 7 in plant– <i>Phytophthora</i> interaction. Journal of Experimental Botany, 2021, 72, 5751-5765.	2.4	7
193	Conductive graphene coated carboxymethyl cellulose hybrid fibers with polymeric ionic liquids as intermediate. Carbohydrate Polymers, 2022, 280, 119009.	5.1	7
194	Synthesis and properties of wholly aromatic phosphorus-containing thermotropic liquid crystal copolyesters with excellent fibre formation ability. Liquid Crystals, 2021, 48, 466-474.	0.9	6
195	Genome Sequence Resource of <i>Phomopsis longicolla</i> YC2-1, a Fungal Pathogen Causing Phomopsis Stem Blight in Soybean. Molecular Plant-Microbe Interactions, 2021, 34, 842-844.	1.4	6
196	3D Printing Conductive Composites with Poly(ionic liquid) as a Noncovalent Intermedia to Fabricate Carbon Circuits. Macromolecular Materials and Engineering, 2021, 306, 2100560.	1.7	6
197	First Report of <i>Phytophthora cactorum</i> Causing Root Rot of Lavender in China. Plant Disease, 2017, 101, 1057.	0.7	6
198	A Phytophthora sojae gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induced in host infection and its anti-oxidative function in yeast. Science Bulletin, 2006, 51, 1316-1323.	1.7	5

#	Article	IF	CITATIONS
199	Cyclic utilization of HP-Î ² -CD in the bioconversion of cortisone acetate by Arthrobacter simplex. Biotechnology Letters, 2016, 38, 597-602.	1.1	5
200	Biocatalyst-mediated production of 11,15-dihydroxy derivatives of androst-1,4-dien-3,17-dione. Journal of Bioscience and Bioengineering, 2017, 123, 692-697.	1.1	5
201	Characterization of the Papain-Like Protease p29 of the Hypovirus CHV1-CN280 in Its Natural Host Fungus Cryphonectria parasitica and Nonhost Fungus Magnaporthe oryzae. Phytopathology, 2019, 109, 736-747.	1.1	5
202	An Improved Method for the Identification of Soybean Resistance to Phytophthora sojae Applied to Germplasm Resources from the Huanghuaihai and Dongbei Regions of China. Plant Disease, 2020, 104, 408-413.	0.7	5
203	Phytophthora sojae. , 2017, , 199-223.		5
204	ATAC-seq reveals the landscape of open chromatin and cis-regulatory elements in the Phytophthora sojae genome. Molecular Plant-Microbe Interactions, 2022, , .	1.4	5
205	Medicinal plant extracts and protein kinase C inhibitor suppress zoosporogenesis and impair motility of Phytophthora capsici zoospores. Plant Protection Science, 2016, 52, 113-122.	0.7	4
206	A loop-mediated isothermal amplification assay can rapidly diagnose soybean root-rot and damping-off diseases caused by Pythium spinosum. Australasian Plant Pathology, 2019, 48, 553-562.	0.5	4
207	Development of seven novel specific SCAR markers for rapid identification of Phytophthora sojae: the cause of root- and stem-rot disease of soybean. European Journal of Plant Pathology, 2019, 153, 517-531.	0.8	4
208	Assays for Effector-Mediated Suppression of Programmed Cell Death in Yeast. Methods in Molecular Biology, 2011, 712, 173-180.	0.4	4
209	Phytophthora sojae Transformation Based on the CRISPR/Cas9 System. Bio-protocol, 2022, 12, e4352.	0.2	4
210	Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a Wheat–Soybean Rotation System. Microorganisms, 2022, 10, 667.	1.6	4
211	<i>Diaporthe</i> Diversity and Pathogenicity Revealed from a Broad Survey of Soybean Stem Blight in China. Plant Disease, 2022, 106, 2892-2903.	0.7	4
212	Genetic relationships among Chinese and American isolates of Phytophthora sojae assessed by RAPD markers. Science Bulletin, 2006, 51, 2095-2102.	1.7	3
213	Resistance Evaluation of Soybean Germplasm from Huanghuai Region to Phytophthora Root Rot. Agricultural Sciences in China, 2011, 10, 246-251.	0.6	3
214	Expression and purification of beefy meaty peptide in Pichia pastoris. Korean Journal of Chemical Engineering, 2011, 28, 848-852.	1.2	3
215	Amniotic fluid embolism as a cause of maternal mortality in China between 1996 and 2013: a population-based retrospective study. BMC Pregnancy and Childbirth, 2016, 16, 316.	0.9	3
216	Synthesis and properties of liquid crystal copolyurethanes containing biphenyl type diols and diisocyanates. Molecular Crystals and Liquid Crystals, 2020, 709, 43-53.	0.4	3

#	Article	IF	CITATIONS
217	Identification of Resistance Genes to Phytophthora sojae in Domestic Soybean Cultivars from China Using Particle Bombardment. Plant Disease, 2020, 104, 1888-1893.	0.7	3
218	Development of LAMP Assays Using a Novel Target Gene for Specific Detection of <i>Pythium terrestris</i> , <i>Pythium spinosum</i> , and â€~ <i>Candidatus</i> Pythium huanghuaiense'. Plant Disease, 2021, 105, 2888-2897.	0.7	3
219	First Report of Stalk Rot Caused by <i>Phytophthora tentaculata</i> on <i>Aucklandia lappa</i> in China. Plant Disease, 2008, 92, 1365-1365.	0.7	3
220	Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry, 2022, 170, 275-286.	2.8	3
221	Ionic liquid regenerated cellulose membrane electroless plated by silver layer for ECG signal monitoring. Cellulose, 2022, 29, 3467-3482.	2.4	3
222	Cloning of genes encoding nonhost hypersensitive response-inducing elicitors from Phytophthora boehmeriae. Science Bulletin, 2007, 52, 231-237.	1.7	2
223	Green fluorescent protein (GFP) as a vital marker for studying the interaction of Phytophthora sojae and soybean. Science Bulletin, 2009, 54, 2822-2829.	4.3	2
224	A <i>Phytophthora</i> conserved transposonâ€like DNA element as a potential target for soyabean root rot disease diagnosis. Plant Pathology, 2013, 62, 719-726.	1.2	2
225	Generating Gene Silenced Mutants in Phytophthora sojae. Methods in Molecular Biology, 2018, 1848, 275-286.	0.4	2
226	Phytopythium nanjingense sp. nov. (Pythiaceae, Peronosporales) from southern China based on morphological and molecular characters. Phytotaxa, 2019, 403, 239.	0.1	2
227	Changes in growth and soil microbial communities in reciprocal grafting clones between Populus deltoides males and females exposed to water deficit conditions. Annals of Forest Science, 2019, 76, 1.	0.8	2
228	Poly(ionic liquid)s as phase-transporter for graphene oxide liquid crystals from aqueous to non-polar organic phase via noncovalent functionalization. Liquid Crystals, 2019, 46, 598-608.	0.9	2
229	Real-time PCR Analysis of PAMP-induced Marker Gene Expression in Nicotiana benthamiana. Bio-protocol, 2018, 8, e3031.	0.2	2
230	Identification and characterization of L-type lectin receptor-like kinases involved in Glycine max–Phytophthora sojae interaction. Planta, 2021, 254, 128.	1.6	2
231	An Oomycete-Specific Leucine-Rich Repeat-Containing Protein Is Involved in Zoospore Flagellum Development in <i>Phytophthora sojae</i> . Phytopathology, 2022, 112, 2351-2359.	1.1	2
232	Phytophthora elicitor PB90 induced apoptosis in suspension cultures of tobacco. Science Bulletin, 2005, 50, 435.	1.7	1
233	First report of soybean stem blight caused by Diaporthe phaseolorum in Sichuan province, China. Plant Disease, 2021, , .	0.7	1
234	Preparation and Purification of Proteins Secreted from Phytophthora sojae. Bio-protocol, 2018, 8, e3045.	0.2	1

#	Article	IF	CITATIONS
235	Synthesis and characterisation of main-chain liquid-crystal polyurethanes containing azo group. Liquid Crystals, 2021, 48, 121-130.	0.9	1
236	A novel LAMP assay using hot water in vacuum insulated bottle for rapid detection of the soybean red crown rot pathogen Calonectria ilicicola. Australasian Plant Pathology, 2022, 51, 251-259.	0.5	1
237	Using a Suppression Subtractive Library-Based Approach to Identify Non-Heading Chinese Cabbage Genes Up-Regulated in Early Response to Elicitor PB90. Agricultural Sciences in China, 2008, 7, 303-313.	0.6	0
238	Protocol of a prospective and multicentre China Teratology Birth Cohort (CTBC): association of maternal drug exposure during pregnancy with adverse pregnancy outcomes. BMC Pregnancy and Childbirth, 2021, 21, 593.	0.9	0
239	10.2478/s11814-009-0225-4. , 2011, 26, 1313.		0
240	The effect of maternal polycyclic aromatic hydrocarbons exposure and methylation levels of congenital heart diseases andidate genes on the risk of congenital heart diseases. Prenatal Diagnosis, 2022, 42, 1142-1154.	1.1	0