Radames J B Cordero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844961/publications.pdf

Version: 2024-02-01

172386 3,049 54 29 citations h-index papers

g-index 65 65 65 3450 docs citations times ranked citing authors all docs

175177

52

#	Article	IF	CITATIONS
1	<i>Bacillus anthracis</i> produces membrane-derived vesicles containing biologically active toxins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19002-19007.	3.3	340
2	Functions of fungal melanin beyond virulence. Fungal Biology Reviews, 2017, 31, 99-112.	1.9	269
3	Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis. PLoS ONE, 2010, 5, e11113.	1.1	215
4	The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials, 2010, 31, 669-679.	5.7	119
5	Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathogens, 2018, 14, e1006982.	2.1	119
6	Demonstration of Antibiofilm and Antifungal Efficacy of Chitosan against Candidal Biofilms, Using an In Vivo Central Venous Catheter Model. Journal of Infectious Diseases, 2010, 201, 1436-1440.	1.9	116
7	The capsule of <i>Cryptococcus neoformans </i> . Virulence, 2019, 10, 822-831.	1.8	115
8	Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. Journal of Antimicrobial Chemotherapy, 2011, 66, 2573-2580.	1.3	92
9	The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. Journal of Biological Chemistry, 2019, 294, 10471-10489.	1.6	85
10	Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Molecular Microbiology, 2011, 81, 206-218.	1.2	78
11	Blm10 Protein Promotes Proteasomal Substrate Turnover by an Active Gating Mechanism. Journal of Biological Chemistry, 2011, 286, 42830-42839.	1.6	74
12	Immunomodulatory Effects of Serotype B Glucuronoxylomannan from <i>Cryptococcus gattii</i> Correlate with Polysaccharide Diameter. Infection and Immunity, 2010, 78, 3861-3870.	1.0	73
13	Capsule Growth in Cryptococcus neoformans Is Coordinated with Cell Cycle Progression. MBio, 2014, 5, e00945-14.	1.8	65
14	Impact of Yeast Pigmentation on Heat Capture and Latitudinal Distribution. Current Biology, 2018, 28, 2657-2664.e3.	1.8	63
15	Capsules from Pathogenic and Non-Pathogenic Cryptococcus spp. Manifest Significant Differences in Structure and Ability to Protect against Phagocytic Cells. PLoS ONE, 2012, 7, e29561.	1.1	61
16	Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Molecular Microbiology, 2011, 79, 1101-1117.	1.2	60
17	Melanin. Current Biology, 2020, 30, R142-R143.	1.8	59
18	Melanin, Radiation, and Energy Transduction in Fungi. Microbiology Spectrum, 2017, 5, .	1.2	58

#	Article	IF	Citations
19	Role for Chitin and Chitooligomers in the Capsular Architecture of <i>Cryptococcus neoformans</i> Eukaryotic Cell, 2009, 8, 1543-1553.	3.4	54
20	Microbial melanins for radioprotection and bioremediation. Microbial Biotechnology, 2017, 10, 1186-1190.	2.0	49
21	Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo. Cellular Microbiology, 2010, 12, 740-753.	1.1	47
22	Chronological Aging Is Associated with Biophysical and Chemical Changes in the Capsule of Cryptococcus neoformans. Infection and Immunity, 2011, 79, 4990-5000.	1.0	45
23	Melanin deposition in two Cryptococcus species depends on cell-wall composition and flexibility. Journal of Biological Chemistry, 2020, 295, 1815-1828.	1.6	43
24	Histoplasma capsulatum Heat-Shock 60 Orchestrates the Adaptation of the Fungus to Temperature Stress. PLoS ONE, 2011, 6, e14660.	1.1	42
25	Biogenesis of extracellular vesicles in yeast. Communicative and Integrative Biology, 2010, 3, 533-535.	0.6	41
26	Identification of Linear Epitopes in Bacillus anthracis Protective Antigen Bound by Neutralizing Antibodies. Journal of Biological Chemistry, 2009, 284, 25077-25086.	1.6	39
27	Antibody Binding to <i>Cryptococcus neoformans</i> Impairs Budding by Altering Capsular Mechanical Properties. Journal of Immunology, 2013, 190, 317-323.	0.4	36
28	Methamphetamine Enhances Cryptococcus neoformans Pulmonary Infection and Dissemination to the Brain. MBio, $2013,4,.$	1.8	35
29	A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. Journal of Biological Chemistry, 2017, 292, 417-434.	1.6	35
30	The Capsule of Cryptococcus neoformans Modulates Phagosomal pH through Its Acid-Base Properties. MSphere, $2018, 3, .$	1.3	33
31	N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture. Microbiology (United Kingdom), 2017, 163, 1540-1556.	0.7	30
32	Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. Journal of Fungi (Basel,) Tj ETQq0 (0 0 _{1.9} BT /C	Overlock 10 Tf
33	Fungal Polysaccharides: Biological Activity Beyond the Usual Structural Properties. Frontiers in Microbiology, 2011, 2, 171.	1.5	28
34	Global structures of IgG isotypes expressing identical variable regions. Molecular Immunology, 2013, 56, 588-598.	1.0	28
35	A Role for LHC1 in Higher Order Structure and Complement Binding of the Cryptococcus neoformans Capsule. PLoS Pathogens, 2014, 10, e1004037.	2.1	28
36	Melanin for space travel radioprotection. Environmental Microbiology, 2017, 19, 2529-2532.	1.8	27

#	Article	lF	Citations
37	Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. MSystems, 2021, 6, e0082221.	1.7	27
38	Life Science's Average Publishable Unit (APU) Has Increased over the Past Two Decades. PLoS ONE, 2016, 11, e0156983.	1.1	27
39	Alcohol impairs J774.16 macrophage-like cell antimicrobial functions in <i>Acinetobacter baumannii</i> infection. Virulence, 2013, 4, 467-472.	1.8	26
40	Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection. Scientific Reports, 2016, 6, 21765.	1.6	26
41	Galactoxylomannans from Cryptococcus neoformans Varieties <i>neoformans</i> and <i>grubii</i> Are Structurally and Antigenically Variable. Eukaryotic Cell, 2010, 9, 1018-1028.	3.4	23
42	A Paracoccidioides brasiliensis glycan shares serologic and functional properties with cryptococcal glucuronoxylomannan. Fungal Genetics and Biology, 2012, 49, 943-954.	0.9	22
43	The benefits of scientific mobility and international collaboration. FEMS Microbiology Letters, 2016, 363, .	0.7	20
44	The Buoyancy of <i>Cryptococcus neoformans</i> Is Affected by Capsule Size. MSphere, 2018, 3, .	1.3	20
45	Temporal Behavior of Capsule Enlargement by Cryptococcus neoformans. Eukaryotic Cell, 2013, 12, 1383-1388.	3.4	17
46	Melanization in Cryptococcus neoformans Requires Complex Regulation. MBio, 2020, 11, .	1.8	17
47	Cell-wall dyes interfere with Cryptococcus neoformans melanin deposition. Microbiology (United) Tj ETQq $1\ 1\ 0.7$	784314 rg 0.7	:BT/Qverlock
48	Exploring Cryptococcus neoformans capsule structure and assembly with a hydroxylamine-armed fluorescent probe. Journal of Biological Chemistry, 2020, 295, 4327-4340.	1.6	13
49	Beat the heat: correlates, compounds, and mechanisms involved in fungal thermotolerance. Fungal Biology Reviews, 2021, 36, 60-75.	1.9	13
50	Cryptococcus neoformans Secretes Small Molecules That Inhibit IL- $1\hat{l}^2$ Inflammasome-Dependent Secretion. Mediators of Inflammation, 2020, 2020, 1-20.	1.4	12
51	Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture. Journal of Biological Chemistry, 2022, 298, 101769.	1.6	7
52	Histoplasma capsulatum Glycans From Distinct Genotypes Share Structural and Serological Similarities to Cryptococcus neoformans Glucuronoxylomannan. Frontiers in Cellular and Infection Microbiology, 2020, 10, 565571.	1.8	4
53	<scp><i>Allergen1</i></scp> regulates polysaccharide structure in <i><scp>C</scp>ryptococcus neoformans</i> Molecular Microbiology, 2013, 88, 713-727.	1.2	2
54	Melanin, Radiation, and Energy Transduction in Fungi. , 0, , 509-514.		2