List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844942/publications.pdf

Version: 2024-02-01

OLAE S ANDERSEN

#	Article	IF	CITATIONS
1	Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Frontiers in Physiology, 2022, 13, 836789.	2.8	4
2	Capsaicin as an amphipathic modulator of Na _V 1.5 mechanosensitivity. Channels, 2022, 16, 9-26.	2.8	3
3	Cannabidiol inhibits the skeletal muscle Nav1.4 by blocking its pore and by altering membrane elasticity. Journal of General Physiology, 2021, 153, .	1.9	38
4	First-generation physician-scientists are under-represented and need better support. Nature Medicine, 2021, 27, 752-755.	30.7	20
5	Atomistic Characterization of Gramicidin Channel Formation. Journal of Chemical Theory and Computation, 2021, 17, 7-12.	5.3	12
6	Mechanisms underlying drug-mediated regulation of membrane protein function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
7	Assessing the Perturbing Effects of Drugs on Lipid Bilayers Using Gramicidin Channel-Based <i>In Silico</i> and <i>In Vitro</i> Assays. Journal of Medicinal Chemistry, 2020, 63, 11809-11818.	6.4	10
8	How perceptions of a successful physician-scientist varies with gender and academic rank: toward defining physician-scientist's success. BMC Medical Education, 2020, 20, 50.	2.4	11
9	Molecular Mechanism for Gramicidin Dimerization and Dissociation in Bilayers of Different Thickness. Biophysical Journal, 2019, 117, 1831-1844.	0.5	15
10	Quantitative Characterization of Protein–Lipid Interactions by Free Energy Simulation between Binary Bilayers. Journal of Chemical Theory and Computation, 2019, 15, 6491-6503.	5.3	7
11	Antidepressants are modifiers of lipid bilayer properties. Journal of General Physiology, 2019, 151, 342-356.	1.9	48
12	Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles. Biophysical Journal, 2019, 116, 860-873.	0.5	44
13	Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. ELife, 2019, 8, .	6.0	87
14	Synthetic Analogues of the Snail Toxin 6-Bromo-2-mercaptotryptamine Dimer (BrMT) Reveal That Lipid Bilayer Perturbation Does Not Underlie Its Modulation of Voltage-Gated Potassium Channels. Biochemistry, 2018, 57, 2733-2743.	2.5	18
15	Stopped-Flow Fluorometric Ion Flux Assay for Ligand-Gated Ion Channel Studies. Methods in Molecular Biology, 2018, 1684, 223-235.	0.9	16
16	Fluorinated Alcohols' Effects on Lipid Bilayer Properties. Biophysical Journal, 2018, 115, 679-689.	0.5	23
17	Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3109-3114.	7.1	45
18	Gateways to the Laboratory. Academic Medicine, 2017, 92, 628-634.	1.6	23

#	Article	IF	CITATIONS
19	Timing and Reset Mechanism of GTP Hydrolysis-Driven Conformational Changes of Atlastin. Structure, 2017, 25, 997-1010.e4.	3.3	27
20	Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation. Biophysical Journal, 2017, 112, 1185-1197.	0.5	48
21	Gramicidin A Channel Formation Induces LocalÂLipid Redistribution II: A 3D Continuum Elastic Model. Biophysical Journal, 2017, 112, 1198-1213.	0.5	22
22	Exchange of Gramicidin between Lipid Bilayers: Implications for the Mechanism of Channel Formation. Biophysical Journal, 2017, 113, 1757-1767.	0.5	18
23	Characterizing Residue-Bilayer Interactions Using Gramicidin A as a Scaffold and Tryptophan Substitutions as Probes. Journal of Chemical Theory and Computation, 2017, 13, 5054-5064.	5.3	14
24	Divergent effects of anesthetics on lipid bilayer properties and sodium channel function. European Biophysics Journal, 2017, 46, 617-626.	2.2	30
25	History and Outcomes of 50 Years of Physician–Scientist Training in Medical Scientist Training Programs. Academic Medicine, 2017, 92, 1390-1398.	1.6	98
26	Effect of Statins on the Nanomechanical Properties of Supported Lipid Bilayers. Biophysical Journal, 2016, 111, 363-372.	0.5	32
27	Introduction to Biophysics Week: What is Biophysics?. Biophysical Journal, 2016, 110, E01-E03.	0.5	26
28	Calcium ions open a selectivity filter gate during activation of the MthK potassium channel. Nature Communications, 2015, 6, 8342.	12.8	35
29	Perspectives on: The response to osmotic challenges. Journal of General Physiology, 2015, 145, 371-372.	1.9	4
30	A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. Journal of General Physiology, 2015, 146, 463-475.	1.9	35
31	Bilayer Effects of Antimalarial Compounds. PLoS ONE, 2015, 10, e0142401.	2.5	7
32	A KcsA/MloK1 Chimeric Ion Channel Has Lipid-dependent Ligand-binding Energetics. Journal of Biological Chemistry, 2014, 289, 9535-9546.	3.4	12
33	Regulation of Ion Channel Function by the Host Lipid Bilayer Examined by a Stopped-Flow Spectrofluorometric Assay. Biophysical Journal, 2014, 106, 1070-1078.	0.5	33
34	Ion-Induced Defect Permeation of Lipid Membranes. Biophysical Journal, 2014, 106, 586-597.	0.5	93
35	Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties. Journal of General Physiology, 2014, 144, 545-560.	1.9	25
36	Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function. ACS Chemical Biology, 2014, 9, 1788-1798.	3.4	241

OLAF S ANDERSEN

#	Article	IF	CITATIONS
37	Assessing smectic liquid-crystal continuum models for elastic bilayer deformations. Chemistry and Physics of Lipids, 2013, 169, 19-26.	3.2	20
38	Small-Molecule Photostabilizing Agents are Modifiers of Lipid Bilayer Properties. Biophysical Journal, 2013, 104, 2410-2418.	0.5	41
39	Interactions of drugs and amphiphiles with membranes: modulation of lipid bilayer elastic properties by changes in acyl chain unsaturation and protonation. Faraday Discussions, 2013, 161, 461-480.	3.2	36
40	Through thick and thin. Nature Chemical Biology, 2013, 9, 667-668.	8.0	5
41	HCN1 Channels as Targets for Anesthetic and Nonanesthetic Propofol Analogs in the Amelioration of Mechanical and Thermal Hyperalgesia in a Mouse Model of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 363-373.	2.5	59
42	Phosphoinositides alter lipid bilayer properties. Journal of General Physiology, 2013, 141, 673-690.	1.9	23
43	Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e68942.	2.5	60
44	Perspectives on: Conformational coupling in ion channels. Journal of General Physiology, 2012, 140, 595-597.	1.9	0
45	A Designed Inhibitor of a CLC Antiporter Blocks Function through a Unique Binding Mode. Chemistry and Biology, 2012, 19, 1460-1470.	6.0	25
46	Influence of Hydrophobic Mismatch on Structures and Dynamics of Gramicidin A and Lipid Bilayers. Biophysical Journal, 2012, 102, 1551-1560.	0.5	92
47	Gramicidin A Backbone and Side Chain Dynamics Evaluated by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Experiments. II: Nuclear Magnetic Resonance Experiments. Journal of Physical Chemistry B, 2011, 115, 7427-7432.	2.6	5
48	The Membrane Interface Dictates Different Anchor Roles for "Inner Pair―and "Outer Pair―Tryptophan Indole Rings in Gramicidin A Channels. Biochemistry, 2011, 50, 4855-4866.	2.5	17
49	Gramicidin A Backbone and Side Chain Dynamics Evaluated by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Experiments. I: Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 7417-7426.	2.6	31
50	Alcohol's Effects on Lipid Bilayer Properties. Biophysical Journal, 2011, 101, 847-855.	0.5	133
51	Quantitative Modeling of Membrane Deformations by Multihelical Membrane Proteins: Application to G-Protein Coupled Receptors. Biophysical Journal, 2011, 101, 2092-2101.	0.5	85
52	Gramicidin Channels as Cation Nanotubes. , 2011, , 11-30.		2
53	Regulation of Protein Function by Membrane Elastic Properties. Biological and Medical Physics Series, 2011, , 187-203.	0.4	0
54	A One-Dimensional Continuum Elastic Model for Membrane-Embedded Gramicidin Dimer Dissociation. PLoS ONE, 2011, 6, e15563.	2.5	1

#	Article	IF	CITATIONS
55	Effects of green tea catechins on gramicidin channel function and inferred changes in bilayer properties. FEBS Letters, 2011, 585, 3101-3105.	2.8	22
56	Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery. Journal of General Physiology, 2011, 138, 249-270.	1.9	48
57	Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. Proceedings of the United States of America, 2011, 108, 12717-12722.	7.1	28
58	Perspectives on: Ion selectivity. Journal of General Physiology, 2011, 137, 393-395.	1.9	41
59	Medical Scientist Training Programs: Federal Funding Offers Support and Drives Innovation. Academic Medicine, 2010, 85, 1559.	1.6	2
60	Gramicidin-based Fluorescence Assay; for Determining Small Molecules Potential for Modifying Lipid Bilayer Properties. Journal of Visualized Experiments, 2010, , .	0.3	30
61	Are MD–PhD Programs Meeting Their Goals? An Analysis of Career Choices Made by Graduates of 24 MD–PhD Programs. Academic Medicine, 2010, 85, 1.	1.6	148
62	Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of the Royal Society Interface, 2010, 7, 373-395.	3.4	265
63	Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15427-15430.	7.1	111
64	Screening for Small Molecules' Bilayer-Modifying Potential Using a Gramicidin-Based Fluorescence Assay. Assay and Drug Development Technologies, 2010, 8, 427-436.	1.2	60
65	A Combined Experimental and Theoretical Study of Ion Solvation in Liquid <i>N</i> -Methylacetamide. Journal of the American Chemical Society, 2010, 132, 10847-10856.	13.7	35
66	Cholesterol Modulates the Membrane Effects and Spatial Organization of Membrane-Penetrating Ligands for G-Protein Coupled Receptors. Journal of Physical Chemistry B, 2010, 114, 12046-12057.	2.6	31
67	Polar Groups in Membrane Channels: Consequences of Replacing Alanines with Serines in Membrane-Spanning Gramicidin Channels. Biochemistry, 2010, 49, 6856-6865.	2.5	6
68	Energetics of Double-Ion Occupancy in the Gramicidin A Channel. Journal of Physical Chemistry B, 2010, 114, 13881-13888.	2.6	15
69	The Two-Membrane Model of Epithelial Transport: Koefoed-Johnsen and Ussing (1958). Journal of General Physiology, 2008, 132, 607-612.	1.9	24
70	Models and Mechanistic Insight. Journal of General Physiology, 2008, 131, 515-519.	1.9	7
71	The Preference of Tryptophan for Membrane Interfaces. Journal of Biological Chemistry, 2008, 283, 22233-22243.	3.4	93
72	The Inhibitory Effect of (â^')-Epigallocatechin Gallate on Activation of the Epidermal Growth Factor Receptor Is Associated with Altered Lipid Order in HT29 Colon Cancer Cells. Cancer Research, 2007, 67, 6493-6501.	0.9	189

#	Article	IF	CITATIONS
73	Docosahexaenoic acid alters bilayer elastic properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9638-9643.	7.1	131
74	Curcumin is a Modulator of Bilayer Material Properties. Biochemistry, 2007, 46, 10384-10391.	2.5	132
75	Bilayer Thickness and Membrane Protein Function: An Energetic Perspective. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 107-130.	18.3	738
76	Gramicidin Channels: Versatile Tools. , 2007, , 33-80.		14
77	Single-Molecule Methods for Monitoring Changes in Bilayer Elastic Properties. Methods in Molecular Biology, 2007, 400, 543-570.	0.9	35
78	Ion Permeation through a Narrow Channel: Using Gramicidin to Ascertain All-Atom Molecular Dynamics Potential of Mean Force Methodology and Biomolecular Force Fields. Biophysical Journal, 2006, 90, 3447-3468.	0.5	133
79	Molecular dynamics $\hat{a} \in$ " potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophysical Chemistry, 2006, 124, 251-267.	2.8	181
80	2,3-Butanedione Monoxime Affects Cystic Fibrosis Transmembrane Conductance Regulator Channel Function through Phosphorylation-Dependent and Phosphorylation-Independent Mechanisms: The Role of Bilayer Material Properties. Molecular Pharmacology, 2006, 70, 2015-2026.	2.3	29
81	A Brief History of The Journal of General Physiology. Journal of General Physiology, 2005, 125, 3-12.	1.9	19
82	Gramicidin Channels. IEEE Transactions on Nanobioscience, 2005, 4, 10-20.	3.3	115
83	50-Year Anniversary of Sliding Filament. Journal of General Physiology, 2004, 123, 629-629.	1.9	1
84	Energetics of ion conduction through the gramicidin channel. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 117-122.	7.1	371
85	Regulation of Sodium Channel Function by Bilayer Elasticity. Journal of General Physiology, 2004, 123, 599-621.	1.9	239
86	Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature, 2004, 430, 235-240.	27.8	271
87	Structure of Gramicidin A in a Lipid Bilayer Environment Determined Using Molecular Dynamics Simulations and Solid-State NMR Data. Journal of the American Chemical Society, 2003, 125, 9868-9877.	13.7	123
88	Genistein Can Modulate Channel Function by a Phosphorylation-Independent Mechanism:  Importance of Hydrophobic Mismatch and Bilayer Mechanics. Biochemistry, 2003, 42, 13646-13658.	2.5	138
89	Hydrophobic Coupling of Lipid Bilayer Energetics to Channel Function. Journal of General Physiology, 2003, 121, 477-493.	1.9	85
90	Conformational control through translocational regulation: a new view of secretory and membrane protein folding. BioEssays, 2002, 24, 741-748.	2.5	16

OLAF S ANDERSEN

#	Article	IF	CITATIONS
91	Inclusion-Induced Bilayer Deformations: Effects of Monolayer Equilibrium Curvature. Biophysical Journal, 2000, 79, 2583-2604.	O.5	146
92	Free Energy Simulations:  Thermodynamic Reversibility and Variability. Journal of Physical Chemistry B, 2000, 104, 5179-5190.	2.6	32
93	[28] Design and characterization of gramicidin channels. Methods in Enzymology, 1999, 294, 525-550.	1.0	66
94	Spring Constants for Channel-Induced Lipid Bilayer Deformations Estimates Using Gramicidin Channels. Biophysical Journal, 1999, 76, 889-895.	0.5	177
95	Modulation of Gramicidin Channel Structure and Function by the Aliphatic "Spacer―Residues 10, 12, and 14 between the Tryptophans. Biochemistry, 1999, 38, 1030-1039.	2.5	20
96	Design and Characterization of Gramicidin Channels with Side Chain or Backbone Mutations. Novartis Foundation Symposium, 1999, 225, 44-61.	1.1	2
97	Energetics of Inclusion-Induced Bilayer Deformations. Biophysical Journal, 1998, 74, 1966-1983.	0.5	318
98	Lipid Bilayer Electrostatic Energy, Curvature Stress, and Assembly of Gramicidin Channelsâ€. Biochemistry, 1997, 36, 5695-5701.	2.5	144
99	The conformational preference of gramicidin channels is a function of lipid bilayer thickness 1. FEBS Letters, 1997, 412, 15-20.	2.8	120
100	The Heterogeneous Collision Velocity for Hydrated Ions in Aqueous Solutions Is â^1⁄4104cm/s. The Journal of Physical Chemistry, 1996, 100, 4622-4629.	2.9	39
101	Stabilizing Effect of D-Alanine2 in Gramicidin Channels. Biochemistry, 1995, 34, 6827-6837.	2.5	36
102	Energetics of Heterodimer Formation among Gramicidin Analogues with an NH2-terminal Addition or Deletion. Journal of Molecular Biology, 1993, 231, 1102-1121.	4.2	63
103	Carbodiimide modification reduces the conductance and increases the tetrodotoxin sensitivity in batrachotoxin-modified sodium channels. Pflugers Archiv European Journal of Physiology, 1992, 421, 262-269.	2.8	3
104	On the helix sense of gramicidin A single channels. Proteins: Structure, Function and Bioinformatics, 1992, 12, 49-62.	2.6	64
105	Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry, 1991, 30, 8830-8839.	2.5	161
106	Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Biochemistry, 1990, 29, 512-520.	2.5	45
107	Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Journal of Molecular Biology, 1990, 211, 221-234.	4.2	81
108	Induction of conductance heterogeneity in gramicidin channels. Biochemistry, 1989, 28, 6571-6583.	2.5	94

#	Article	IF	CITATIONS
109	Platelet-activating factor is a general membrane perturbant. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 129-132.	2.6	75
110	Surface Charges near the Guanidinium Neurotoxin Binding Site. Annals of the New York Academy of Sciences, 1986, 479, 306-312.	3.8	10
111	Electrogenic proton transport in epithelial membranes. Journal of Membrane Biology, 1982, 65, 155-174.	2.1	86