Seung Hwan Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/384491/publications.pdf

Version: 2024-02-01

55 papers 8,056 citations

35 h-index 55 g-index

60 all docs

60 docs citations

60 times ranked

5395 citing authors

#	Article	IF	CITATIONS
1	Recent advances in the transition metal-catalyzed twofold oxidative Câ \in "H bond activation strategy for Câ \in "C and Câ \in "N bond formation. Chemical Society Reviews, 2011, 40, 5068.	38.1	2,200
2	Palladium-Catalyzed Câ^'H Functionalization of Pyridine <i>N</i> -Oxides: Highly Selective Alkenylation and Direct Arylation with Unactivated Arenes. Journal of the American Chemical Society, 2008, 130, 9254-9256.	13.7	651
3	Intramolecular Oxidative Câ^N Bond Formation for the Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed and Metal-Free Conditions. Journal of the American Chemical Society, 2011, 133, 5996-6005.	13.7	484
4	Rhodium-Catalyzed Intermolecular Amidation of Arenes with Sulfonyl Azides via Chelation-Assisted C–H Bond Activation. Journal of the American Chemical Society, 2012, 134, 9110-9113.	13.7	430
5	Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water. Journal of the American Chemical Society, 2005, 127, 16046-16047.	13.7	412
6	Intermolecular Oxidative C–N Bond Formation under Metal-Free Conditions: Control of Chemoselectivity between Aryl sp ² and Benzylic sp ³ C–H Bond Imidation. Journal of the American Chemical Society, 2011, 133, 16382-16385.	13.7	365
7	Silverâ€Mediated Direct Amination of Benzoxazoles: Tuning the Amino Group Source from Formamides to Parent Amines. Angewandte Chemie - International Edition, 2009, 48, 9127-9130.	13.8	274
8	Cobalt―and Manganese atalyzed Direct Amination of Azoles under Mild Reaction Conditions and the Mechanistic Details. Angewandte Chemie - International Edition, 2010, 49, 9899-9903.	13.8	237
9	A Facile Access toN-Sulfonylimidates and Their Synthetic Utility for the Transformation to Amidines and Amides. Organic Letters, 2006, 8, 1347-1350.	4.6	185
10	Transitionâ€Metalâ€Free Regioselective Alkylation of Pyridine <i>N</i> à€Oxides Using 1,1â€Diborylalkanes as Alkylating Reagents. Angewandte Chemie - International Edition, 2016, 55, 9690-9694.	13.8	169
11	Cu-Facilitated Câ^'O Bond Formation Using <i>N</i> -Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic Câ^'H Bonds. Journal of the American Chemical Society, 2008, 130, 7824-7825.	13.7	155
12	A Versatile Rhodium(I) Catalyst System for the Addition of Heteroarenes to both Alkenes and Alkynes by a CH Bond Activation. Angewandte Chemie - International Edition, 2012, 51, 3677-3681.	13.8	151
13	Synthesis of Condensed Pyrroloindoles via Pd-Catalyzed Intramolecular Câ^'H Bond Functionalization of Pyrroles. Journal of the American Chemical Society, 2008, 130, 16158-16159.	13.7	144
14	Room Temperature Copperâ€Catalyzed 2â€Functionalization of Pyrrole Rings by a Threeâ€Component Coupling Reaction. Angewandte Chemie - International Edition, 2008, 47, 2836-2839.	13.8	126
15	Catalytic One-Pot Synthesis of Cyclic Amidines by Virtue of Tandem Reactions Involving Intramolecular Hydroamination under Mild Conditions. Journal of the American Chemical Society, 2006, 128, 12366-12367.	13.7	124
16	Iridium-catalyzed diborylation of benzylic C–H bonds directed by a hydrosilyl group: synthesis of 1,1-benzyldiboronate esters. Chemical Science, 2014, 5, 694-698.	7.4	122
17	Rate-Accelerated Nonconventional Amide Synthesis in Water: A Practical Catalytic Aldol-Surrogate Reaction. Angewandte Chemie - International Edition, 2007, 46, 1897-1900.	13.8	117
18	Synthesis of Branched Alkylboronates by Copperâ€Catalyzed Allylic Substitution Reactions of Allylic Chlorides with 1,1â€Diborylalkanes. Angewandte Chemie - International Edition, 2016, 55, 1498-1501.	13.8	109

#	Article	IF	CITATIONS
19	Iridium-Catalyzed Borylation of Secondary Benzylic C–H Bonds Directed by a Hydrosilane. Journal of the American Chemical Society, 2013, 135, 8157-8160.	13.7	102
20	Diastereo―and Enantioselective Synthesis of βâ€Aminoboronate Esters by Copper(I)â€Catalyzed 1,2â€Addition of 1,1â€Bis[(pinacolato)boryl]alkanes to Imines. Angewandte Chemie - International Edition, 2017, 56, 11584-11588.	13.8	98
21	Intramolecular Oxidative Diamination and Aminohydroxylation of Olefins under Metal-Free Conditions. Organic Letters, 2012, 14, 1424-1427.	4.6	94
22	Copper-Catalyzed Diastereoselective Addition of Diborylmethane to <i>N</i> - <i>tert</i> -Butanesulfinyl Aldimines: Synthesis of β-Aminoboronates. Organic Letters, 2016, 18, 1210-1213.	4.6	80
23	Generation and Application of (Diborylmethyl)zinc(II) Species: Access to Enantioenriched <i>>gem</i> à€Diborylalkanes by an Asymmetric Allylic Substitution. Angewandte Chemie - International Edition, 2018, 57, 12930-12934.	13.8	76
24	Highly Mesoporous Metalâ€Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie - International Edition, 2020, 59, 3416-3422.	13.8	75
25	Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C–H Bonds. Journal of the American Chemical Society, 2016, 138, 762-765.	13.7	72
26	Base-promoted, deborylative secondary alkylation of N-heteroaromatic N-oxides with internal gem-bis[(pinacolato)boryl]alkanes: a facile derivatization of 2,2′-bipyridyl analogues. Chemical Communications, 2017, 53, 7573-7576.	4.1	65
27	Transitionâ€Metalâ€Free Regioselective Alkylation of Pyridine <i>N</i> à€Oxides Using 1,1â€Diborylalkanes as Alkylating Reagents. Angewandte Chemie, 2016, 128, 9842-9846.	2.0	63
28	Chemoselective Coupling of $1,1$ -Bis[(pinacolato)boryl]alkanes for the Transition-Metal-Free Borylation of Aryl and Vinyl Halides: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2017, 139, 976-984.	13.7	61
29	Chemo- and Stereoselective Crotylation of Aldehydes and Cyclic Aldimines with Allylic <i>gem</i> -Diboronate Ester. Organic Letters, 2017, 19, 4054-4057.	4.6	61
30	Catalytic Chemo- and Enantioselective Transformations of <i>gem</i> li>-Diborylalkanes and (Diborylmethyl)metallic Species. Accounts of Chemical Research, 2021, 54, 3917-3929.	15.6	55
31	Access to Enantioenriched Benzylic 1,1-Silylboronate Esters by Palladium-Catalyzed Enantiotopic-Group Selective Suzuki–Miyaura Coupling of (Diborylmethyl)silanes with Aryl Iodides. ACS Catalysis, 2019, 9, 230-235.	11.2	51
32	Copper-Catalyzed Diastereoselective and Enantioselective Addition of 1,1-Diborylalkanes to Cyclic Ketimines and \hat{l}_{\pm} -Imino Esters. ACS Catalysis, 2019, 9, 8503-8508.	11.2	49
33	Advances in transition metal-free deborylative transformations of <i>gem</i> -diborylalkanes. Chemical Communications, 2021, 57, 4346-4353.	4.1	46
34	Copper-Catalyzed Enantiotopic-Group-Selective Allylation of <i>gem</i> -Diborylalkanes. Journal of the American Chemical Society, 2021, 143, 1069-1077.	13.7	41
35	ZnMe ₂ -Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism. Journal of the American Chemical Society, 2020, 142, 13235-13245.	13.7	34
36	Synthesis of Branched Alkylboronates by Copperâ€Catalyzed Allylic Substitution Reactions of Allylic Chlorides with 1,1â€Diborylalkanes. Angewandte Chemie, 2016, 128, 1520-1523.	2.0	33

#	Article	IF	Citations
37	Diastereo―and Enantioselective Synthesis of βâ€Aminoboronate Esters by Copper(I)â€Catalyzed 1,2â€Addition of 1,1â€Bis[(pinacolato)boryl]alkanes to Imines. Angewandte Chemie, 2017, 129, 11742-11746.	2.0	33
38	Palladium-Catalyzed Chemoselective Negishi Cross-Coupling of Bis[(pinacolato)boryl]methylzinc Halides with Aryl (Pseudo)Halides. Organic Letters, 2019, 21, 5912-5916.	4.6	27
39	Highly Mesoporous Metalâ€Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie, 2020, 132, 3444-3450.	2.0	25
40	Evaluation of catalytic activity of copper salts and their removal processes in the three-component coupling reactions. Pure and Applied Chemistry, 2008, 80, 873-879.	1.9	24
41	Improved Synthesis of \hat{l}^2 -Aminoboronate Esters via Copper-Catalyzed Diastereo- and Enantioselective Addition of 1,1-Diborylalkanes to Acyclic Arylaldimines. Organic Process Research and Development, 2019, 23, 1663-1668.	2.7	23
42	Generation and Application of (Diborylmethyl)zinc(II) Species: Access to Enantioenriched <i>>gem</i> >â€Diborylalkanes by an Asymmetric Allylic Substitution. Angewandte Chemie, 2018, 130, 13112-13116.	2.0	20
43	Cobalt-Catalyzed Defluorosilylation of Aryl Fluorides via Grignard Reagent Formation. Organic Letters, 2020, 22, 7387-7392.	4.6	19
44	Defluorinative C–C Bond-Forming Reaction of Trifluoromethyl Alkenes with <i>gem</i> -(Diborylalkyl)lithiums. Organic Letters, 2022, 24, 2705-2710.	4.6	19
45	Facile Synthesis of α-Boryl-Substituted Allylboronate Esters Using Stable Bis[(pinacolato)boryl]methylzinc Reagents. Organic Letters, 2020, 22, 2476-2480.	4.6	16
46	Recent Developments in the Direct Methylation of Electron-ÂDeficient N-Heteroarenes. Synlett, 2016, 27, 2525-2529.	1.8	15
47	Concave Silica Nanosphere with a Functionalized Open-Mouthed Cavity as Highly Active and Durable Catalytic Nanoreactor. Chemistry of Materials, 2017, 29, 7785-7793.	6.7	14
48	Kinetic Resolution of αâ€Silylâ€Substituted Allylboronate Esters via Chemo―and Stereoselective Allylboration of Aldehydes. Advanced Synthesis and Catalysis, 2021, 363, 2371-2376.	4.3	14
49	Confined Nucleation and Growth of PdO Nanocrystals in a Seed-Free Solution inside Hollow Nanoreactor. ACS Applied Materials & Interfaces, 2017, 9, 29992-30001.	8.0	8
50	Chemoselective Palladiumâ€Catalyzed Suzukiâ€Miyaura Crossâ€Coupling of (Diborylmethyl)silanes with Alkenyl Bromides. Asian Journal of Organic Chemistry, 2019, 8, 1664-1667.	2.7	8
51	Spontaneous Pt Deposition on Defective Surfaces of In ₂ O ₃ Nanocrystals Confined within Cavities of Hollow Silica Nanoshells: Pt Catalyst-Modified ITO Electrode with Enhanced ECL Performance. ACS Applied Materials & Description of Samp; Interfaces, 2017, 9, 20728-20737.	8.0	7
52	Direct Arylâ€Aryl Coupling without Preâ€Functionalization Enabled by Excessive Oxidation of Twoâ€Electron Ag(I)/Ag(III) Catalyst. Advanced Synthesis and Catalysis, 2018, 360, 2032-2042.	4.3	5
53	Pd atalyzed Negishi Cross oupling of Vinyl Bromides with Diborylmethylzinc Chloride. Bulletin of the Korean Chemical Society, 2021, 42, 499-501.	1.9	1
54	Frontispiz: Highly Mesoporous Metalâ€Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie, 2020, 132, .	2.0	0

#	Article	IF	CITATIONS
55	Frontispiece: Highly Mesoporous Metalâ€Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie - International Edition, 2020, 59, .	13.8	O