Iurii Bodachivskyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/384479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acidâ€Catalyzed Conversion of Carbohydrates into Valueâ€Added Small Molecules in Aqueous Media and Ionic Liquids. ChemSusChem, 2018, 11, 642-660.	6.8	67
2	Dissolution of Cellulose: Are Ionic Liquids Innocent or Noninnocent Solvents?. ACS Sustainable Chemistry and Engineering, 2020, 8, 10142-10150.	6.7	42
3	The role of the molecular formula of ZnCl ₂ · <i>n</i> H ₂ O on its catalyst activity: a systematic study of zinc chloride hydrates in the catalytic valorisation of cellulosic biomass. Catalysis Science and Technology, 2019, 9, 4693-4701.	4.1	32
4	Catalytic Valorization of Native Biomass in a Deep Eutectic Solvent: A Systematic Approach toward High-Yielding Reactions of Polysaccharides. ACS Sustainable Chemistry and Engineering, 2020, 8, 678-685.	6.7	27
5	Metal triflates are tunable acidic catalysts for high yielding conversion of cellulosic biomass into ethyl levulinate. Fuel Processing Technology, 2019, 195, 106159.	7.2	23
6	High Yielding Acid atalysed Hydrolysis of Cellulosic Polysaccharides and Native Biomass into Low Molecular Weight Sugars in Mixed Ionic Liquid Systems. ChemistryOpen, 2019, 8, 1316-1324.	1.9	19
7	A Systematic Study of Metal Triflates in Catalytic Transformations of Glucose in Water and Methanol: Identifying the Interplay of BrÃ,nsted and Lewis Acidity. ChemSusChem, 2019, 12, 3263-3270.	6.8	15
8	Acidâ€Catalysed Conversion of Carbohydrates into Furanâ€Type Molecules in Zinc Chloride Hydrate. ChemPlusChem, 2019, 84, 352-357.	2.8	15
9	Towards furfural from the reaction of cellulosic biomass in zinc chloride hydrate solvents. Industrial Crops and Products, 2020, 146, 112179.	5.2	12
10	Understanding the role of the substrate and the metal triflate acidic catalyst in sugar platform biorefineries: A comprehensive systematic approach to catalytic transformations of (poly)carbohydrates in ethanol. Chemical Engineering Journal, 2020, 399, 125816.	12.7	6
11	OLEOCHEMICAL SYNTHESIS OF SULFANES, THEIR STRUCTURE AND PROPERTIES. Chemistry and Chemical Technology, 2017, 11, 365-371.	1.1	4
12	A Systematic Study of Metal Triflates in Catalytic Transformations of Glucose in Water and Methanol: Identifying the Interplay of BrÄ,nsted and Lewis Acidity. ChemSusChem, 2019, 12, 3208-3208.	6.8	2
13	Comment on â€~Chitosan dissolution with sulfopropyl imidazolium BrÃ,nsted acidic ionic liquids'. Journal of Molecular Liquids, 2021, 328, 115403.	4.9	1

15	New insights into the mechanism of sulfur vulcanisation: a theoretical study. Catalysis and Petrochemistry, 2020, , 67-72.	0.3	0
----	--	-----	---