Atsushi Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844777/publications.pdf Version: 2024-02-01

Δτομομι ζησιμ

#	Article	IF	CITATIONS
1	The PAR-aPKC system: lessons in polarity. Journal of Cell Science, 2006, 119, 979-987.	1.2	632
2	Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 2007, 447, 330-333.	13.7	435
3	Mammalian Lgl Forms a Protein Complex with PAR-6 and aPKC Independently of PAR-3 to Regulate Epithelial Cell Polarity. Current Biology, 2003, 13, 734-743.	1.8	346
4	aPKC Acts Upstream of PAR-1b in Both the Establishment and Maintenance of Mammalian Epithelial Polarity. Current Biology, 2004, 14, 1425-1435.	1.8	280
5	aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. Journal of Cell Science, 2002, 115, 3565-3573.	1.2	228
6	Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes To Cells, 2002, 7, 1161-1171.	0.5	167
7	Interaction between PAR-3 and the aPKC–PAR-6 complex is indispensable for apical domain development of epithelial cells. Journal of Cell Science, 2009, 122, 1595-1606.	1.2	146
8	Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. Journal of Cell Science, 2002, 115, 2485-2495.	1.2	146
9	Self-association of PAR-3-mediated by the Conserved N-terminal Domain Contributes to the Development of Epithelial Tight Junctions. Journal of Biological Chemistry, 2003, 278, 31240-31250.	1.6	122
10	Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. Journal of Cell Science, 2002, 115, 2485-95.	1.2	118
11	Lgl mediates apical domain disassembly by suppressing the PAR-3-aPKC-PAR-6 complex to orient apical membrane polarity. Journal of Cell Science, 2006, 119, 2107-2118.	1.2	108
12	The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase PAR-1b. Biochemical and Biophysical Research Communications, 2010, 391, 812-817.	1.0	50
13	MTCL1 plays an essential role in maintaining Purkinje neuron axon initial segment. EMBO Journal, 2017, 36, 1227-1242.	3.5	38
14	Intracellular polarity protein PARâ€1 regulates extracellular laminin assembly by regulating the dystroglycan complex. Genes To Cells, 2009, 14, 835-850.	0.5	37
15	MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane. Nature Communications, 2014, 5, 5266.	5.8	30
16	A novel PAR-1-binding protein, MTCL1, plays critical roles in organizing microtubules in polarizing epithelial cells. Journal of Cell Science, 2013, 126, 4671-83.	1.2	27
17	Regulatory mechanisms and cellular functions of non-centrosomal microtubules. Journal of Biochemistry, 2017, 162, 1-10.	0.9	24
18	Tumor suppressor protein Lgl mediates G1 cell cycle arrest at high cell density by forming an Lgl-VprBP-DDB1 complex. Molecular Biology of the Cell, 2015, 26, 2426-2438.	0.9	16

Атѕиѕні Suzuki

#	Article	IF	CITATIONS
19	A Japanese Family of Spinocerebellar Ataxia Type 21: Clinical and Neuropathological Studies. Cerebellum, 2018, 17, 525-530.	1.4	13
20	Molecular basis of the microtubule-regulating activity of microtubule crosslinking factor 1. PLoS ONE, 2017, 12, e0182641.	1.1	6
21	Phosphorylation and dephosphorylation of Ser852 and Ser889 control clustering, localization, and function of PAR3. Journal of Cell Science, 2020, 133, .	1.2	3
22	MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. Journal of Cell Science, 2022, 135, .	1.2	1